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A Data preparation

A.1 Non-combustible Consumption

In order to account for non-combustible energy, I closely follow note 3 of the EIA’s Monthly
Energy Review’s section 1 (U.S. Energy Information Administration, 2025). I exclude entirely
from petroleum consumption the industrial use of miscellaneous petroleum products, waxes, spe-
cial naphthas, petrochemical feedstock, residual and distilate fuel oil. I also remove the entire con-
sumption of lubricants, and asphalt and roal oil. Lastly, I remove a proportion of non-combustile
use petroleum coke and hydrocarbon gas liquids following the MER’s national estimates for the
year. For coal consumption, I again use the national estimated proportion of non-combustible
use of coal coke in manufacturing for the adjustment. Finally, I follow the same national average
procedure to remove a proportion of the natural gas consumed by the industrial sector. I follow
the same methodology for expenditures.

A.2 Electricity Trade

To account for electricity trade, I compute the electrical generating sector’s energy mix for
each US state. I then identify the net exporting states and remove the amount of primary energy
used to produce their exported electricity. Note that this assumes no consignment. In reality it
is possible that the exporting electricity comes from a specific subset of power plants and energy
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Figure A.1: Snapshot of American Electrical Grid

sources. I undertake a similar exercise for Canada and Mexico. I obtain their electricity sources’
shares from EMBER (2024). Because I do not have information on their fossil fuel energy ef-
ficiency, nor on their respective expenditure, I use the US’s yearly averages to input for these.
This procedure is needed to back-out the amount of primary dirty energy consumed in electricity
production and the respective expenditure. Finally, I combine the information on US’s energy
imports (Administration, 2024) with Canada’s energy exports (Canada Energy Regulator, 2025)1

to compute the share of net electricity imported into the US from Canada and/or Mexico.
In a second step, I consider three American major grid regions, the Eastern, Western and

Texas grids2, following U.S. Environmental Protection Agency (2024). Their delineation is de-
termined by the electrical distribution infrastructure which is minimally connected between the
three regions. For expository purposes I display a snapshot of the American electricty grid in
figure A.1. In turn, the interconnection within the three grids is high. In practice, even within
these grids further distinctions based on infrastructure, market access or legal oversight are war-
ranted. Specifically, different sub-regions have different electricity transmission organizations
that regulate the access and distribution of electricity. This alternative nonetheless is infeasible
for two reasons. The first is that multiple organizations operate in some states, especially in the
Midwest and Northwest of the US. The second is that I would still not be able to surpass the lack
of knowledge of the origin (source) of electricity transmitted.

Using the previous regional delineations I assume that each grid constitutes a unique pool of
electricity trade so that any electricity is exported into the pool and then imported proportionally
across net importing states. As a result, I assign proportionally to net importing states the average

1I use the national trade values and not the state-to-state trade statistics because I do not have information on the
energy mixes of Canadian states. Moreover, given my pooling approach, the SEDS provides sufficient information
to understand the source of imports/exports.

2The western grid is made up of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon,
Utah, Washington, Wyoming. The remaining states apart from Texas are assigned to the eastern grid.
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Figure A.2: Clean-to-dirty Energy Adjustment
Notes: The map plots the log-point change in the ratio between Non-Pollutant and Pollutant Energy Con-
sumption due to the electricity trade adjustment.

primary energy used to generate the imported electricity in each pool. To determine this pool,
I first compute the net imported electricity for each grid. Having only 3 US grids and knowing
imports and exports allows me to determine the origins (destinations) of imported (exported)
electricity. I then aggregate the imported electricity’s energy mix in each net importing grid
together with that from net exporting states located within the grid. Using these values, I add
to every net importing state the respective proportion of primary energy imported through the
grid’s pool.

I plot some relevant metrics to assess the impact of accounting for electricity trade in fig-
ure A.2, figure A.3, and figure A.4.

B The price of Clean Energy
I present the results from regressing the dirty energy first-order condition in table B.1. The

equation estimated takes the form P̂ D
t = β0 + β1P̂ e

t + β2
Êe,D

t

Ee
t

+ ε, excluding and including a
time-trend, t, respectively. Notice that the values of β2 are expected to be negative, whereas I get
a positive value, reflecting the underlying endogeneity. Nonetheless, the implied relationship is
strong — as demonstrated by the high explanatory powers.
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Figure A.3: Effect of Adjustment on Natural Gas
Notes: The map plots the log-point change in the share of Natural Gas on Dirty Energy Consumption as a
result of the electricity trade adjustment.

Table B.1: Electricity FOC Regression

P̂ D
t

(1) (2)
Constant 0.0202 -0.0695∗

(0.0259) (0.0391)
P̂ e

t 3.078∗∗∗ 2.564∗∗∗

(0.6496) (0.6079)
ÊD,e

t

Ee
t

4.072∗∗∗ 5.758∗∗∗

(1.034) (1.098)
t 0.0069∗∗∗

(0.0024)
Observations 31 31
R2 0.58379 0.67966

B.1 Capacity vs Consumption

Equation (6), which serves as a proxy for clean energy prices to generate the regression model
described in equation (15), uses the growth rate of clean electricity consumption instead of spe-
cific production inputs — such as installed capital — commonly employed in the literature (e.g.,
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Figure A.4: Effect of Adjustment on Coal
Notes: Themap plots the log-point change in the share of Coal on Dirty Energy Consumption as a result of
the electricity trade adjustment. The grey shaded states for 2020 are Vermont and Massachusetts who did
not use coal directly. Their actual values after the electricity trade adjustment are 7813 and 79134, which
represent 7.58% and 6.92% of total dirty energy consumed, respectively. They net imported 65% and 70%
of their total electricity consumption, respectively.

Papageorgiou et al. (2017)). This choice is driven by data limitations: installed net summer ca-
pacity3 series in the SEDS database only begin in 2008, and account for all installed capacity,
not just the electricity generating sector’s (which remains its biggest contributor). Neverthe-
less, I demonstrate that the dynamics of total installed capacity and clean electricity production
are closely aligned over the available period. Specifically, figure B.1 compares the logarithmic
growth rates of installed net summer capacity across all clean energy sources with states’ clean
electricity production4, revealing a strong linear relationship. Meaningful changes in capacity,
are typically accompanied by equivalent variations in production. At the same time, variations in
production can occur even when capacity remains constant. This can happen due to unexpected
annual climacteric conditions for example. On top of practicality, using consumption data facil-
itates accounting for electricity trade, a task that would be substantially more complicated if I
relied on installed capacity figures.

3The maximum output that a generating unit, plant, or system can supply to the grid under normal summer
conditions, net of the electricity used onsite.

4Contrarily to the empirical procedure, I here use state production of clean electricity. This compares directly
with the installed capacity — measured within the state.
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Figure B.1: Clean Energy Capacity vs Production
Notes: The scatterplot compares states’ annual logarithmic growth rates in clean electricity production to
net installed summer capacity, all measured in kwh. The line is a fitted regression line. Series spans 2009
to 2022. It excludes Delaware until 2011 because its power generating sector did not produce any clean
electricity before that (but the residential sector, as defined by the EIA, did).

C Identification

C.1 Shift-share instrument

Shift-shareWeights. In figure C.1 I present the geographical distribution of shift-share weights
for each sub-type of energy. Petroleum and natural gas tend to have a higher relative preponder-
ance in other uses apart from electricity generation. In turn, coal’s expenditure share is usually
higher in electricity generation, hence the negative values. Although the scales are different, in
absolute value, the variation is similar across petroleum and natural gas, and smaller in coal. The
distribution across the US is typically symmetric, especially between coal and natural gas. Places
where coal has a relatively more preponderant role, have lower weights for gas and vice-versa.

The commodity price time-series used as shifters to construct my shift-share instrument are
presented in figure C.3. Although they are very correlated across time, there is relevant orthog-
onal variation.

Crude Oil and Petroleum Prices. I begin by computing the principal components of annual
state-level petroleum prices across the US throughout my sample. I present the corresponding
scree plot in figure C.4. After computing the first principal component, I regress it on the the
price of crude oil, using the West Texas Intermediate. I present the results in table C.1.
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(a) Natural Gas (b) Coal

(c) Petroleum

Figure C.1: Shift-share Weights
Notes: The maps present the US variation in expenditure share differences for commodity j between the
overall economy and electricity generation, ωj

i ≡ ωD,j
i,1990 − ωe,j

i,1990, for each of the three energy sub-types
considered, natural gas, petroleum and coal, in 1990. The scales are different across the maps.

Determinants of the SSIV Shares. Table C.2 presents the results from regressing the SSIV shares
- the difference expenditure weights in 1990 - on different exogenous state-specific factors.

C.2 Alternative Instruments for Electricity Shares

I propose two alternative instruments for the electricity shares. The first refines the partition
of my main instrument, now computing the growth rate average of states outside of state i’s
regional electricity grid determined by its RTO/ISO or other market form. The second instead
uses the third lag of the log of relative clean energy shares. I use the third instead of the second
lag of the shares because I have included a lag of the shift-share instrument. I present the results in
that order in table C.3. This also allows me to test for endogeneity. With that in mind I conduct a
Sargan test by including the three instruments in the same IV regression. The corresponding test
statistic is 2.07, and so I do not have statistical evidence to contradict the hypothesis of exogeneity
for any of the instruments.
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Table C.2: Exogenous determinants of Relative Weights (1990)

ω
petr
i ω

ngas
i ωcoal

i

(1) (2) (3) (4) (5) (6)
Constant -0.70 1.6∗∗∗ -0.57∗∗

(0.42) (0.38) (0.23)
ln Population (89) -0.02 -0.001 0.03∗∗∗ 0.005 0.009 0.02∗∗∗

(0.01) (0.01) (0.008) (0.01) (0.006) (0.006)
ln Person per Sq. mile (89) -0.06∗∗∗ -0.08∗∗∗ 0.03∗∗∗ 0.06∗∗∗ -0.01∗∗ -0.03∗∗∗

(0.01) (0.02) (0.009) (0.01) (0.005) (0.007)
ln Avg Precipitation (80-89) 0.09∗∗ 0.10∗∗ -0.06∗∗ -0.06∗∗ 0.04∗ 0.04∗

(0.04) (0.04) (0.03) (0.02) (0.02) (0.02)
ln Avg Temperature (80-89) 0.15∗ 0.20 -0.32∗∗∗ -0.37∗∗∗ 0.02 0.06

(0.08) (0.15) (0.08) (0.12) (0.06) (0.07)
ln Distance to LA 0.07∗∗ 0.04 -0.06∗∗ -0.04∗∗ 0.01 -0.002

(0.03) (0.03) (0.02) (0.02) (0.01) (0.01)
ln Distance to Cushing, OK 0.04∗∗∗ 0.04∗∗ -0.01 -0.008 0.02∗∗ 0.02∗∗

(0.01) (0.02) (0.03) (0.04) (0.009) (0.009)
ln Distance to WY 0.03∗∗ 0.008 -0.02 -0.010 0.002 -0.008

(0.01) (0.02) (0.01) (0.009) (0.007) (0.007)
Observations 48 48 48 48 48 48
R2 0.59244 0.71986 0.50842 0.63664 0.31585 0.52385

PADD+ fixed effects ✓ ✓ ✓
Notes: Results from regressing the SSIV weights on pre-determined variables. The sample includes the 48
contiguous US states. The standard errors are Heteroskedasticity-robust and are presented in parenthesis.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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Figure C.3: Commodity Price Variation
Notes: Time-series plot of log growth rates in the three commodity prices considered: the West Texas
Intermediate for Petroleum (Oil), the US’s Central Appalachian coal spot price (Coal), and the Henry Hub’s
natural gas spot price (Nat Gas).

D Results
Complements to Discussion. To complement my discussion, I plot the actual price evolution
for clean and dirty energy, as well as total consumption, in figure D.1. This shows that the trends
in generation costs for wind and solar energy evolved very similarly. In figure D.2 I replicate
figure 6 using the raw data instead. Figure D.3 uses photovoltaic LCOE estimates in place of
wind’s.

The full results from estimating equation (17) are provided in table D.1.

D.1 Further Robustness Checks

Alternative Samples. In order to show that my main policy conclusions are not driven by the
sample of shocks, I repeat the estimation of equation (15) with a sample now: i) ending before the
Covid-19 pandemic, in 2019; ii) including 2020, again trimming the 1% tails; iii) including 2020
but now using two-year windows; iv) excluding 2008; v) excluding 2009; and vi) not trimming
my main sample. I present the results in table D.2. Ending in 2019 slightly increases my point
estimate to 0.54. Excluding either 2008 or 2009, the years with the highest swings in fossil fuel
prices in my sample, decreases the point estimate to 0.47 and 0.46, respectively. Including covid
significantly decreases the point estimate to 0.38 and increases the standard errors. When using 2-
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Figure C.4: Petroleum Price’s Scree Plot Table C.1: Petroleum Regression on wti

1st PC
(1)

Constant -16.67∗∗∗

(0.3852)
WTI 0.3367∗∗∗

(0.0068)
Observations 33
R2 0.98767

Notes: The figures on the scree plot represent each principal component’s variance share. The regression
table presents the results from regressing the main principal component on the West Texas Intermediate
annual average price. The sample spans 1990 to 2022.

Table C.3: Alternative Instruments for Clean Electricity Share

(1) (2) (3)
P̂ D

i,t

P e
i,t

-0.4989∗∗ -0.5673∗∗ -0.5297∗∗

(0.2258) (0.2294) (0.2179)
Êe,c

i,t

Ee
i,t

-0.9529∗∗∗ -0.7820∗∗ -0.9385∗∗∗

(0.0592) (0.2952) (0.0716)
Observations 1,376 1,329 1,329
Adjusted R2 0.90457 0.87852 0.89989

1st stage F-statistic, P̂ D
i,t

P e
i,t

23.999 17.021 16.000

1st stage F-statistic, Êe,c
i,t

Ee
i,t

39.353 4.6515 38.579
Sargan Test-statistic 2.0685

State fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
Extra Controls Yes Yes Yes

Notes: Results when using alternative instruments for Ê
e,c
i,t

Ee
i,t
. Column (1) uses an alternative grid region

delineation. Column (2) uses the third lag of E
e,c
i,t

Ee
i,t
. Column (3) includes both instruments to conduct a

Sargan Test. The sample includes the 48 contiguous US states and spans 1991 to 2022, excluding 2020.
Standard errors are clustered at the year and state level. The standard errors are in parenthesis. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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Figure D.1: Energy Consumption and Prices.
Notes: Plot of pollutant and non-pollutant energy consumption and prices. Values normalized to 100
in 2004, except for photovoltaic LCOE estimates whose series starts in 2010. LCOE estimates are from
International Renewable Energy Agency (2024). All prices account for inflation.

Figure D.2: Relative Clean Energy Consumption and Relative Dirty Energy Prices.
Notes: Thefigure plots two series for the U.S.: the log-difference in average energy prices between pollutant
and non-pollutant sources, and the log-difference in energy consumption between clean and dirty energy.
Both series are normalized to 100 in 2004 prior to the log transformation. As a proxy for clean energy prices,
I use onshore wind LCOE estimates from International Renewable Energy Agency (2024). All prices are
adjusted for inflation.

year buckets instead precision increases significantly. The estimate remains lower at 0.38. Finally,
using the untrimmed sample increases the point estimate to 0.59. Doing so may be problematic
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Figure D.3: Relative Clean Energy Consumption and Relative Dirty Energy Prices.
Notes: Thefigure plots two series for the U.S.: the log-difference in average energy prices between pollutant
and non-pollutant sources, and the log-difference in energy consumption between clean and dirty energy.
Both series are normalized to 100 in 2010 prior to the log transformation. As a proxy for clean energy
prices, I use photovoltaic LCOE estimates from International Renewable Energy Agency (2024). All prices
are adjusted for inflation.

as it includes cases such as Vermont who in 2015 decommissioned a nuclear power plant at the
end of 2014, thus observing a massive decline in clean energy consumption — totally unrelated
to contemporaneous commodity price fluctuations.

E From Macro to Micro

E.1 Model’s Detailed Interpretation

The aggregate elasticity depends on two effects, one depicting the consumption reshuffling
and another the energy reallocation. Starting with the latter, the energy mix adjustment depends
on two sources, specific to the nature of energy consumption and the layered structure of en-
ergy production. The first is the adjustment in the electricity’s energy mix ν. Since every sector
j’s electricity originates from the same source, everyone’s electricity becomes ν% greener in re-
sponse to an increase in the relative price of dirty energy. The second source of adjustment is
sector j’s own adjustment away from dirty energy into electricity, determined by σj . This gener-
ates a reshuffling effect as the diversion away from primary dirty energy consumption will now
be fulfilled by both dirty and clean-based electricity. The benefit of each effect evolves symmet-
rically, and is determined both by the clean energy expenditure share in electricity generation,
αe,C

j = P CEe,C
j

P CEe,C
j +P DEe,D

j

, and by sector j’s dirty expenditure share δD
j = P DED

j

P DED
j +P DEe,D

j

. As the
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Table D.1: Kmenta Approximation

Levels First-differences
(1) (2)

ln EC
i,t

ED
i,t

0.2201∗∗∗

(0.0575)(
ln EC

i,t

ED
i,t

)2
0.0204∗∗∗

(0.0061)
t 0.0394∗∗∗

(0.0008)
Intercept 0.0393∗∗∗

(0.0007)
∆t ln EC

i,t

ED
i,t

0.3699∗∗∗

(0.0384)
∆t

(
ln EC

i,t

ED
i,t

)2
0.0348∗∗∗

(0.0050)
σ 1.313 1.426
Observations 1,424 1,424
Adjusted R2 0.98466 0.24687
F-statistic 1,043.0 7.7469

State fixed effects ✓
Notes: Results of estimating equation (17). The headers indicate if the regression was estimated in levels
or in first-differences. The implied point estimates for the aggregate elasticity are displayed in the σ row.
The sample is the same as in my main specification. The standard errors are clustered at the state level
and are presented in parenthesis below the estimate. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% levels, respectively.

share of clean electricity increases, moving away from primary dirty energy has a higher effect
on the energy mix because it is fulfilled by proportionally more clean energy. Similarly, the
higher the primary dirty energy consumption, the more sector j’s elasticity matters, as it diverts
away from more dirty energy. In addition, note that the energy redirected towards electricity
also benefits from the reshuffling towards cleaner electricity sources - reflected in the additional
terms in the ν ′. In contrast, these two forces attenuate the electricity’s elasticity since either the
electricity adjustment does not have a big impact due to the already high share of clean energy or
because its share of total end-use energy is low. Finally, sector j’s energy mix balance, αj(1−αj)

α(1−α) θj ,
determines its contribution to the overall energy adjustment.

The consumption reallocation effects is a result of the differentiated sectoral sensitivities to
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Table D.2: Alternative Samples

(1) (2) (3) (4) (5) (6)
P̂ D

i,t

P e
i,t

-0.5438∗∗ -0.3777 -0.3792∗∗ -0.4715∗ -0.4615∗ -0.5871∗∗

(0.2440) (0.2625) (0.1600) (0.2548) (0.2490) (0.2787)
Êe,c

i,t

Ee
i,t

-0.9477∗∗∗ -0.9779∗∗∗ -0.9659∗∗∗ -0.9599∗∗∗ -0.9629∗∗∗ -0.8801∗∗∗

(0.0809) (0.0830) (0.0697) (0.0827) (0.0768) (0.0834)
Observations 1,292 1,421 687 1,328 1,340 1,440
Adjusted R2 0.90188 0.90677 0.90449 0.90542 0.90402 0.91210

1st stage F-statistic, P̂ D
i,t

P e
i,t

30.755 30.632 20.706 29.776 28.684 35.109

1st stage F-statistic, Êe,c
i,t

Ee
i,t

73.337 78.561 31.299 78.415 76.244 31.420

State fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Extra Controls Yes Yes Yes Yes Yes Yes

Notes: Results when changing the sample. Column (1)’s data ends in 2019. Column (2)’s includes covid.
Column (3)’s includes covid but uses 2 year buckets instead. Column (4) excludes 2008. Column (5) excludes
2009. Column (6) does not trim my main sample. The sample includes the 48 contiguous US states and
starts in 1991. All except column (5)’s data exclude the 1% tails. All regressions are unweighted. Standard
errors are clustered at the year and state level. The standard errors are in parenthesis. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels, respectively.

relative energy prices and to consumers’ sensitivity to changes in relative prices, embodied by
the elasticity of demand ε. Sector j’s sensitivity to energy prices is captured by its marginal cost’s
elasticity to the relative price of dirty energy, ε

P e
j

P D = d ln P e
j /P C

d ln P D/P C . Naturally both of these effects
matter more the higher is the share of energy in costs, sE

j . Moreover, the reallocation away or into
sector j is determined by its higher or lower relative consumption of clean energy, determined
by the size and sign of αj(αj−α)

α(1−α) θj . Hence, αj(αj−α)
α(1−α) θj can be either negative or non-negative.

E.2 Rolling Regressions of Original Sample

In subsection 6.3 I trim the tails of each window individually. Here I repeat the rolling re-
gressions using instead the estimation sample from my main specification - presented in sub-
section 5.1. A caveat is that I must use the observations excluded from the sample before 2008
in order to define the SSIV weights - otherwise I would lose those states. These observations,
nonetheless, remain excluded from the estimation sample. I display the results in figure E.1.
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Figure E.1: Rolling Regressions of equation (15)
Notes: Rolling regressions of equation (15) with 15 year windows. The sample used matches my main
exercise’s - presented in subsection 5.1. SSIV weights are set to the year before the window starts. The
shaded areas are the 90% confidence intervals. Standard errors are clustered at the state and year level.
The yellow line represents the natural logarithm of the rolling average ratio of clean to dirty energy con-
sumption measured in Btus.

E.3 Calibration Exercise

I now provide the details of the calibration exercise laid out in table 5. I aggregate all the
EIA data by sector and year. Quantities and expenditures are summed, and prices are the ratio of
expenditures to quantities. From the BEA’s Fixed Assets Accounts’ table 2.75 I assign items 18, 62,
89, and 90 to transportation, 34 and 67 to the residential sector, and 4, 11, 26, 37, 48, 53, 58, 59, 60,
61, 65, 66, 85, 86, 87, 88, 91, 95, and 98 to goods and services. Similarly, from the BEA’s National
Income and Product Accounts’ table 6.2D6, I assign items 22, 23, 39, and 43 to transportation, 12
and 63 to the residential sector, and 4, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 35, 40, 41, 42, 52, 57, 64,
65, 69, 73, 74, 79, 82, and 85 to the production sector.

The previous step allows me to compute all end-use expenditure shares. I am left with assign-
ing the share of electricity spending to clean or dirty sources. To do this, I first take LCOE prices
for renewables from U.S. Energy Information Administration (2018) for 2022, my main year of
analysis. I choose to use the forecasted prices in 2018 to allow for a lag between planning and im-
plementation. To extend the LCOEs back to 2007, I rely on the LCOE price dynamics for onshore
wind and photovoltaic for the U.S., and the world average geothermal and hydroelectric LCOEs
from International Renewable Energy Agency (2024). Specifically, for wind I have the actual se-

5See here.
6See here.

15

https://apps.bea.gov/iTable/?reqid=10&step=3&isuri=1&1003=16#eyJhcHBpZCI6MTAsInN0ZXBzIjpbMSwyLDMsM10sImRhdGEiOltbIlRhYmxlX0xpc3QiLCI1MSJdLFsiQ2F0ZWdvcmllcyIsIlB1YmxpY0ZBQSJdLFsiU2NhbGUiLCItOSJdLFsiRmlyc3RfWWVhciIsIjE5OTAiXSxbIkxhc3RfWWVhciIsIjIwMjMiXSxbIlNlcmllcyIsIkEiXV19
https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=310&series=q&first_year=2004&scale=-99&last_year=2018&categories=survey&thetable=x#eyJhcHBpZCI6MTksInN0ZXBzIjpbMSwyLDMsM10sImRhdGEiOltbIm5pcGFfdGFibGVfbGlzdCIsIjE4NSJdLFsiY2F0ZWdvcmllcyIsIlN1cnZleSJdLFsiRmlyc3RfWWVhciIsIjE5OTgiXSxbIkxhc3RfWWVhciIsIjIwMjMiXSxbIlNjYWxlIiwiLTYiXSxbIlNlcmllcyIsIkEiXV19


Figure E.2: Renewables’ LCOE Dynamics
Notes: Original data from International Renewable Energy Agency (2024). The fitted values are obtained by
regressing the available series on a constant and the year, or the logarithm of the year for solar generation.

ries available. For the remaining one I lack the data. As a result, I linearly regress the data and
predict the missing values. For solar I use an exponential fit. For geothermal and hydropower I
use instead a linear fit. I present the series and fitted values in figure E.2.

For nuclear generation in 2022 I use instead the marginal costs provided in Nuclear Energy
Institute (2025). This choice is based on the idea that nuclear in 2022 is not the marginal gener-
ation source. Although this may not be the case in 2007, for consistency, I opt to maintain this
assumption. The drawback is that the price of clean electricity is actually lower in 2007 because
most clean electricity originates from this source. I linearly interpolate the prices for missing
years.

Finally, I use the expenditures in fossil fuels and biomass in the electric power sector from
the SEDS to compute prices for each pollutant energy source. The point here is that most of
the costs for electricity generation from dirty sources are determined by fuel prices and not by
infrastructure costs.

Using these figures I am able to compute the average price per kwh and Btu for clean and dirty
energy, respectively. I multiply these prices by the quantities of electricity produced or dirty
energy consumed in electricity generation - retrieving an estimate for the expenditure shares
in each energy aggregate. Equipped with these I can split the end-use expenditure shares in
electricity into clean and dirty generation.

Because my model does not foresee market power nor other fixed costs, I opt to compute a
virtual price of electricity. I first take the first-order conditions implied by profit maximization
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with a CES function, and compute the implied ae from the prices and expenditure shares. Then,
using the CES price index, I compute the virtual price of electricity. I need this to compute ε

P E
j

P D .
Together, this information allows me to compute the aggregate elasticity of substitution, σ,

using equation (18), if I know the sectoral and consumption elasticities.

E.4 Counterfactual Exercises

Electricity Counterfactual. Note that in order for the share of electricity not to change across
energy end-use sectors, I need that d ln P D = d ln P e = 0. Taking the price index for electricity,
I have that

d ln P e = d ln ae

d ln P e
d ln ae + d ln P C

d ln P e
d ln P C .

where d ln ae

d ln P e = dae

dP e
ae

P C . Using the expressions,

dae

dP e
= 1

1 − ν
(P e)ν [(P C)1−ν − (P D)1−ν ]

and

dP C

dP e
= 1

1 − ν
(P e)ν(1 − ν)(P C)νae.

Hence,

d ln P e = 1
1 − ν

ae

[(
P C

P e

)1−ν

−
(

P D

P e

)1−ν]
d ln ae + ae

(
P C

P e

)1−ν

d ln P C .

Finally, note that from the FOC, ae

(
P C

P e

)1−ν

= αe,C . As a result,

d ln P e = 0

⇐⇒ d ln P C = − 1
αe,C(1 − ν)

(1 − 1 − αe,C

1 − ae
)d ln ae.

Moreover, to increase the share of clean energy by approximately 10%, I need that

d ln Ee,C

Ee
= −νd ln P C + d ln ae = 0.1.
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Hence,

d ln P C = d ln ae − 0.1
ν

.

Now I can solve for d ln ae and d ln P C which are equal to

d ln ae = 0.1
1 − νA

d ln P C = A0.1
1 − νA

where A ≡ − 1
αe,C(1−ν)(1 − 1−αe,C

1−ae ). As a result of this change, d ln αe,C ̸= 0 and d ln αj ̸= 0∀j

unless d ln P C = −0.1, in which case, the aggregate elasticity remains the same. In particular, I
have that

d ln αe,C = d ln αe,C

d ln P CEe,C
d ln P CEe,C + d ln αe,C

d ln P DEe,D
d ln P DEe,D

= (1 − αe,C)d ln P CEe,C − (1 − αe,C)d ln P DEe,D

= (1 − αe,C)(d ln ae + (1 − ν)d ln P C + ae

1 − ae
d ln ae).

I can then use the chain rule to find the effect on αe,C ,

dαe,C = αe,Cd ln αe,C

and αj ,

dαd
j =

dαd
j

dαe,C
dαe,C

= (1 − αd
j )dαe,C ,

since αj = αe,C(1 − αd
j ). I can then recompute the aggregate elasticity.
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