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Abstract

We introduce a new strategy to estimate the aggregate elasticity of substitution between
polluting and non-polluting energy. Exploiting variation in US states’ energy mixes, we ob-
tain an elasticity of 0.50 — significantly lower than prior studies. This challenges the notion
that the energy transition can occur without compromising economic growth. A bottom-up
model links aggregate to sectoral elasticities, highlighting transportation as a key constraint.
Crucially, aggregate elasticity dynamics depend more on micro-level substitution patterns
than on the distribution of the energy mix. Consistent with this, we find no evidence of
rising substitutability over the past decade despite rapid clean energy adoption.

1 Introduction
Many assessments of the feasibility, pace, and cost of the energy transition hinge on the con-

cept of an aggregate elasticity of substitution — that is, the economy-wide capacity to substitute
polluting energy sources with cleaner alternatives. Despite its centrality, our understanding of
this concept remains limited. This paper advances this literature in two key ways. First, it in-
troduces a novel empirical strategy to estimate an aggregate elasticity of 0.50 for the United
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States (US), the world’s second-largest emitter of carbon dioxide in the world (Climate Watch,
2021). Second, it develops a theoretical framework that links sectoral energy use to aggregate
energy consumption, connecting our macro-level estimates to micro-level mechanisms. These
contributions offer new insights into the sources and dynamics of the aggregate elasticity, with
implications for the effectiveness of policy tools like subsidies.

Estimating aggregate elasticities of substitution is notoriously difficult, as the dynamics of the
factor inputs reflect both the evolution of relative prices and of unobserved determinants, such
as technological progress and productivity shocks (Grossman and Oberfield, 2022). To address
the subsequent endogeneity concerns, we exploit the cross-sectional variation in energy mixes
across US states and implement a shift-share design in the spirit of Bartik (1991). Specifically, we
leverage on the differences in polluting energy expenditure shares between the overall economy
and the electric power sector. These differences generate heterogeneity in states’ exposure to
global fossil fuel price fluctuations, which in turn produce quasi-random variation in the relative
price of dirty energy. This allows us to identify the elasticity of substitution, yielding a point
estimate of 0.50.

Our finding carries significant policy implications. Through the lens of the canonical model
of Acemoglu et al. (2012), such a low elasticity implies that subsidies alone are insufficient to pro-
mote the transition to net-zero emissions – rendering the most important climate policy tool in
the US ineffective. In addition, it raises concerns regarding the compatibility of the transition to
carbon neutrality and continued economic growth. Other quantitative assessments suggest that
such an inflexible energy mix can more than double the optimal carbon tax relative to previous
estimates in the literature (Hochmuth et al., 2025). As a result, not only can the overall bur-
den be much higher than previously expected, but it could also be significantly more unequally
distributed.

A core challenge in estimating substitution elasticities in the context of energy lies in mea-
suring clean energy prices. Prior work has often proxied clean energy with electricity, but this
would not only be misleading in the US, where a substantial share of electricity remains carbon-
intensive — reaching 58% as recently as 2022, but would also not fit our goal of studying the
full spectrum of energy consumption. We address this challenge by tracing the composition of
electricity generation across energy sources. This approach allows us to infer prevailing clean
energy prices without relying on source-specific cost data. In doing so, we account for shifts in
the US’s clean energy mix — from a reliance on nuclear to a frontier increasingly shaped by wind
and solar — in a data-driven manner.

Our methodology also captures total energy use across the entire economy, rather than fo-
cusing solely on business or manufacturing activity. This broader scope is important for two
reasons. First, transportation and residential use together account for a larger share of US energy
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consumption than the industrial and commercial sectors combined. Second, the composition of
energy use varies dramatically across sectors. Electrification in transportation remains extremely
limited, with more than 99% of its energy expenditures still attributable to fossil fuels as of 2022.
This sector alone accounts for over 53% of total energy expenditures. These patterns imply that
transportation plays a disproportionately large role in determining the aggregate elasticity — a
point we reinforce through our model.

A potential criticism of our approach is that it abstracts from cross-border energy substitu-
tion via trade (Moll et al., 2023). However, this concern is mitigated by the predominance of
non-tradable energy use: in 2022, the transportation and residential sectors together accounted
for over 74% of total energy expenditures. We therefore believe that our estimates capture the
dominant forces shaping aggregate substitutability.

To interpret our estimates, following Oberfield and Raval (2021), we introduce a bottom-up
model that makes the determinants of the aggregate elasticity explicit. This framework connects
sectoral elasticities to the macro-level response and aligns our findings with microeconomic ev-
idence. For instance, we show that energy end-using sectors must exhibit average elasticities of
around 0.81 for our aggregate estimate to hold. This implies that the supply side is more flexible
than the aggregate elasticity would suggest — displaying an average technological elasticity of
0.56, given a value of 0.52 for the electricity-generating sector. The gap between this supply-side
elasticity and the aggregate response reflects the limited ability of final consumption to reallocate
demand across goods and services in response to relative price changes.

We also use the model to explore how changes in the energy mix affect substitutability. No-
tably, we find that increasing the share of clean energy has little effect on the economy’s capacity
to substitute away from dirty energy unless it is accompanied by greater sectoral flexibility. Un-
fortunately, considering the last two decades, we do not find evidence of an increase in the US’s
aggregate elasticity.

Beyond its methodological contributions, this paper also seeks to shed light on the US en-
ergy context. Given the substantial differences in energy composition, policy frameworks, and
consumption patterns across countries, we caution against extrapolating estimates from other
regions. In this sense, our US-focused analysis provides not only novel evidence but also insight
that is essential for designing effective, context-specific energy policy.

Related Literature. The integration of energy and climate considerations intomacroeconomic
models has become increasingly vital for understanding the dynamics of the energy transition.
Central to these frameworks is the elasticity of substitution between clean and dirty energy
sources, which governs how readily an economy can shift away from fossil fuels.
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Acemoglu et al. (2012) is a seminal contribution to this field. They develop a model in which
directed technical change plays a pivotal role in the energy transition. Their findings show that if
the elasticity of substitution is below a critical threshold, neithermarket forces nor subsidies alone
can trigger the transition to net-zero carbon emissions. They suggest a threshold value of 1.5,
which is substantially higher than our estimated value of 0.50. Only when the elasticity exceeds
this threshold do subsidies become effective as a standalone policy tool; otherwise, a combination
of carbon taxes and green subsidies is necessary. Furthermore, at very low elasticities — below
unity, as our estimate indicates — economic growth itself may be at odds with climate goals.

Casey et al. (2023) also analyse the effectiveness of clean energy subsidies, emphasizing their
interaction with the substitution possibilities between energy sources. They show that subsi-
dies reduce emissions only if they lower the marginal product of dirty energy, which requires
sufficiently high substitutability between clean and dirty inputs. In standard settings with low
substitution elasticity and inelastic energy demand, subsidies can perversely increase emissions
and reduce welfare relative to laissez-faire. These findings further challenge the view that sub-
sidies are a universally effective climate policy and underscore the importance of estimating the
elasticity of substitution to evaluate their potential benefits.

In contrast, Golusov et al. (2014) present a dynamic stochastic general equilibrium model
where the optimal carbon tax is derived from a simple formula that depends only on current
GDP, the discount rate, and the expected damage elasticity. Notably, their formulation implies
that the optimal tax is independent of the elasticity of substitution between energy sources. Their
conclusions though, rely on the assumption of path-independence in energy production.

A parallel literature examines the relationship between economic activity and finite energy re-
sources. For instance, Hassler et al. (2021), using a quantitativemodel, and Känzig andWilliamson
(2024), employing time-series methods, both emphasize the crucial role of energy-saving tech-
nologies in sustaining economic growth despite the near absence of substitutability between en-
ergy and other factors of production. The capability to replace fossil fuels with clean energy
sources represents one such technological innovation. Our analysis suggests that this source of
energy efficiency has played a minor role, thus further emphasizing the importance of advance-
ments in overall energy-saving technologies.

Complementing the theoretical macroeconomic literature, broader empirical work has sought
to pin down substitution elasticities across different fuels. Stern (2012) conducts a meta-analysis
of interfuel elasticities — reporting a wide interval of estimates ranging from 0.3 to 2.5. Notwith-
standing, the literature studying specifically the elasticity of substitution between polluting and
non-polluting energy sources still remains scarce. Our work aims precisely to deepen our under-
standing of this concept. Papageorgiou et al. (2017) is, to our knowledge, the first study with this
same objective. Using sectoral OECD data on energy-using businesses and the electricity gen-
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eration sector, they estimate a parametric CES specification via non-linear least squares, finding
elasticities of 3 and 1.8, respectively. However, they do not account for technological progress,
leaving endogeneity concerns unaddressed. In addition, their analysis excludes air transport,
residential energy use, and private vehicle consumption — omitting a substantial share of total
energy demand.

Jo (2024) addresses the endogeneity problem by focusing on manufacturing plants in France
and employing an instrumental variables strategy. They report elasticities between 1.4 and 3,
depending on the instrument used. As we argue in this paper, however, manufacturing is not
representative of aggregate energy consumption. Moreover, while it may be reasonable to treat
electricity as a clean energy source in France, this assumption does not hold in the US context.
Using the same French manufacturing data, Jo and Miftakhova (2024) further show that substi-
tution elasticities increase with electricity use. They suggest that, if this relationship holds at the
aggregate level, the energy transition could be faster and less costly. We find no evidence of this
at the aggregate level in the US over the past two decades.

Outline. This work is structured as follows. Section 2 lays out the macroeconomic framework
that guides the empirical work. Section 3 describes the data used in our empirical exercise. Sec-
tion 4 details the empirical strategy employed to measure clean energy prices and the resulting
identification strategy. The empirical results are provided in section 5. Section 6 introduces the
bottom-up model that links aggregate estimates to their sectoral counterparts and examines the
evolution of elasticities in the US over time. Finally, section 7 concludes.

2 The Aggregate Elasticity of Substitution
We begin by outlining the theoretical framework underpinning our empirical analysis. Fol-

lowing the literature in environmental macroeconomics (Hassler et al., 2016; Lemoine, 2024) we
posit that state-level output is a function of an energy composite, and other inputs, such as labor
and capital. We formalize this by assuming that output follows a constant elasticity of substitution
(CES) function of the form

Yi,t =
(

H
η−1

η

i,t + E
η−1

η

i,t

) η
η−1

(1)

where Ei,t and Hi,t are the input aggregates for energy and other factors, respectively. η is the
elasticity of substitution between Ei,t and Hi,t.

The aggregate energy factor, Ei,t, is a composite of clean and dirty energy consumption1, EC
i,t

1We use interchangeably the nomenclature dirty and polluting, and clean and non-polluting.
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and ED
i,t, respectively, so that

Ei,t =
(

(AD
i,tE

D
i,t)

σ−1
σ + (AC

i,tE
C
i,t)

σ−1
σ

) σ
σ−1

.

AD
i,t and AC

i,t are the share factors, which can change over time. This formulation thus explicitly
accounts for changes in both overall and type-specific energy efficiency. Our parameter of interest

is σ = d ln ED
i,t

EC
i,t

/
d ln P C

i,t

P D
i,t
, the elasticity of substitution between aggregate polluting and non-

polluting energy consumption. Implicitly this nested CES formulation assumes that energy is
separable from the other factors of production. Advantageously for us, to study σ, we need not
specify Hi,t further nor do we need to know the value of η.

We follow Papageorgiou et al. (2017) and define each energy factor as

EX
i,t =

∑
k∈KX

Ek
i,t, X ∈ D, C (2)

where D and C are dirty and clean aggregate energy consumption, respectively, and KX their
underlying energy sources. The differentiation between the two aggregates lies on their opera-
tional greenhouse gas emissions2 (ghg). As a result, non-polluting energy is made up of nuclear,
solar, geothermal, wind and hydropower. In turn, the constituents of the polluting aggregate are
petroleum products, coal, natural gas and biomass. Following our definition, biofuels fall into
petroleum products, and more generally, biomass is classified as a dirty energy source. Although
in theory, biomass could be carbon neutral when considering its life-cycle emissions, this is hardly
the case in practice3.

DiscussionAboutModellingAssumptions. Wedo notmake additional distinctions between
energy sources, such as the coupling or not of battery storage. This reflects the idea that enhanced
battery efficiency and increased availability are akin to increases in the elasticity of substitution.
Improving energy storage capacities is a way of addressing the inherent intermittency of solar
and wind power and, as a result, diminishes the need for fuel based back-up plants. In the same
spirit, additional considerations in energy planning, such as the cost of managing bio-hazardous
waste or the pollution consequences of different types of drilling techniques, can also be captured
in this framework through the energy efficiency parameters,AX

i,t. In contrast, our framework does
not explicitly model for other important considerations such as tail-risk or the role expectations

2The term “operational emissions” contrasts with life-cycle emissions, with the latter including not just emissions
arising from the use of energy, but also from the manufacturing of the underlying infrastructure — particularly
relevant for renewable energy.

3For a discussion of this topic see MIT Climate Portal Writing and Gurgel (2024).
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play in the build up of energy infrastructure capacity (Kellogg, 2014), especially for clean energy.
Moreover, our formulation assumes perfect substitution within energy aggregates. Although

this is the case physically — since fuel based energy generation always involves combustion, and
fuel-conversion technologies do exist4, this does not necessarily hold economically5. In particu-
lar, fuels’ physical characteristics make them more suitable for certain economic activities. This,
coupled with natural resource scarcity, generates the observed concentration in the energy con-
sumptionmix6. Notwithstanding, fuel switching, in particular between natural gas and petroleum
in industrial settings and electricity generation, is generally regarded as high (Baumeister et al.,
2024). Similarly, while electrons are perfectly fungible, the intermittency of solar and wind, or the
distinct ramp-up capabilities of nuclear, mean that clean sources play different roles in electricity
generation.

Despite these considerations, we choose to maintain the literature’s formulation for compa-
rability and practicality — we avoid having to estimate two latent parameters7. In addition, this
formulation guarantees that we do not underestimate the elasticity in the case of high substi-
tutability between clean energy and only a subset of the fuels considered.

Finally, we also ignore the differences in ghg intensity between fuels. While this may be
an important consideration for short-run analysis, with current and projected carbon capturing
capabilities, attaining carbon neutrality requires a significant decrease in all sources of polluting
energy consumption (Pindyck, 2022).

Equilibrium Conditions. We assume that the economy-wide demand for energy is perfectly
competitive, so that the aggregate demand for dirty fuels is represented by the following first-

4The production of synthetic gasoline for example is a well known procedure in history. The Nazi regime pro-
duced half of all its petroleum products during world war II from coal (U.S. Department of Energy, Office of Fossil
Energy and Carbon Management, 2019).

5Although conceptually different from the constant elasticity formulation we use, Stern (2012) conducts a meta-
analysis and finds that the cross-fuel elasticities were on average 1.74, 1.11 and 1.78 for coal and oil, coal and gas,
and oil and gas, respectively.

6For example, petroleum, due to its high energy density, is the preferred fuel in transportation, with 70% of total
US consumption in 2024 directed towards this use. In comparison, 90% of coal usage is directed to the electricity
generation sector. This number decreases to 40% for natural gas with the remaining 60% used for primary con-
sumption in other sectors (U.S. Energy Information Administration, 2024). Note that the purpose of this primary use
may be the production of electricity in-house. 32% of natural gas was directly consumed by industrial plants at this
time.

7Even if we chose not to estimate the inner elasticities and instead used values from the literature, we would not
be able to capture the productivity parameters. On top of this, to the best of our knowledge, there is no counterpart
to the work of Stern (2012) for clean energy.

7



order conditions

ED
i,t = (AD

i,t)σ−1
(

P D
i,t

P E
i,t

)−σ

Ei,t, (3a)

EC
i,t = (AC

i,t)σ−1
(

P C
i,t

P E
i,t

)−σ

Ei,t, (3b)

where P C
i,t and P D

i,t are the prices of clean and dirty energy sources, respectively, and P E
i,t is the

price of the energy index. Taking the ratio of the first-order conditions in equations (3a) and (3b),
applying logs and taking differences, we find that

ÊD
i,t

EC
i,t

= −σ
P̂ D

i,t

P C
i,t

+ (σ − 1)
ÂD

i,t

AC
i,t

, (4)

where Ŷi,t ≡ ln Yi,t − ln Yi,t−1.
We choose to focus on the first-order conditions instead of the production function to cir-

cumvent the normalization difficulties of direct CES estimation discussed in León-Ledesma et al.
(2010). Notwithstanding, estimating σ using equation (4) still requires solving two problems: i)
measuring the price of clean energy, P C , and ii) accounting for the endogeneity problem gen-
erated by the unobserved share parameters, AD

i,t and AC
i,t. We propose solutions to each of these

problems in section 4.1 and section 4.2, respectively. Lastly, by using log-differences instead of
levels, we bypass the problem of unit conversion.

2.1 Accounting for The Full Energy Spectrum

Unlike some of the empirical macroeconomics literature, our framework includes all energy
use, not just stationary non-residential energy. To motivate this choice, figure 1 plots the evolu-
tion of dirty energy consumption across end-using sectors for the US from 1990 to 2022. We fol-
low the US Energy Information Administration’s (EIA) sectoral definitions. Figure 1a displays the
share of total consumption while figure 1b plots the absolute levels. In 2022, transportation and
residential consumption together represented 56% of total polluting-energy usage, versus only
44% for the industrial and commercial sectors. As such, ignoring private and non-stationary en-
ergy usage could risk omitting an important share of total energy consumption. Importantly too,
since 1990, industrial consumption has edged down while transportation’s fuel consumption has
tended to rise. These contrasting dynamics point to the inadequacy of using industrial-specific
energy elasticities in frameworks studying overall energy consumption dynamics, as in most
macroeconomic models, further motivating our comprehensive framework.
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(a) Share of Total Consumption (b) Absolute Values

Figure 1: Energy-using Sectors’ Dirty Energy Consumption
Notes: The measure of dirty energy use includes both direct and indirect polluting energy consumption
(through electricity). Dirty energy includes all petroleum products, coal, natural gas and biomass. It ex-
cludes non-combustible consumption.

3 Data
We employ data from the US Energy Information Administration’s (EIA) State Energy Data

System (SEDS) to measure annual energy consumption and expenditures at the state level in the
contiguous United States. Our sample excludes Alaska and Hawaii and incorporates the District
of Columbia into Maryland. The SEDS provides consistent, comparable annual time series on
states’ energy production, use, and expenditures, derived from EIA surveys and complementary
observational data. The dataset spans the period from 1990 to 2022.

Following the EIA’s statistical energy balance methodology, we restrict attention to primary
energy consumption — that is, energy used prior to any transformation into secondary or tertiary
forms. For example, coal converted into synthetic gas and subsequently into electricity is recorded
solely as coal consumption8. Accordingly, we consider the consumption of petroleum products
instead of crude oil, which lacks direct end-use applications. Although the SEDS reports crude oil
production, it does not report crude oil consumption; our focus on petroleum products therefore
aligns with both the data and the conceptual framework presented in section 2.

We exclude non-combustible uses of combustible energy sources, which arise when energy
inputs are consumed as material inputs — for example, in the production of feedstocks, lubricants,
or asphalt. Thus, our measures of energy use capture only consumption for heat and power
generation9. Focusing on consumption (rather than production) and measuring it at the first
point of use is consistent with the macroeconomic framework laid out in section 2, where energy
enters the aggregate production function as an input. This approach also yields a direct mapping

8U.S. Energy Information Administration (n.d.).
9Further details on variable construction are provided in section A.1 of the appendix.
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between fuel use and emissions.
Following standard practice in the macroeconomic literature (Hassler et al., 2016), we express

all energy in British thermal units (Btu). For polluting energy, we apply the SEDS’s time-varying,
energy-specific conversion factors, which translate source-specific physical units (e.g., barrels,
short tons) into Btus based on each fuel’s average heat content. For clean energy, we adopt
the EIA’s fixed electricity-to-heat conversion rate of 3.412. All clean energy is first measured in
kilowatt-hour (kWh) of electricity produced and then converted into Btus. This diverges from the
EIA’s convention only for nuclear energy, which has a different conversion factor. Although heat-
based conversions are appropriate when comparing combustible inputs (as with fossil fuels), they
are unsuitable for clean energy, which is consumed exclusively via electricity. Since our empirical
exercises uses log growth rates, conversion factors matter only within energy categories. We
define the price of dirty energy as the consumption-weighted average of the subcomponents’
prices.

3.1 Accounting for Electricity Trade

Our empirical strategy relies on state-level measures of aggregate primary energy consump-
tion. However, the SEDS does not capture primary energy embodied in electricity imported from
other states or abroad. Although SEDS reports electricity imports and exports, it does not identify
their sources or destinations. Assuming identical energy mixes for produced and consumed elec-
tricity would bias primary consumption measures, as interstate electricity trade is non-negligible.
Between 1990 and 2022, net imported electricity constituted, on average, 21% of total electric-
ity consumed in net-importing states, while net-exporting states exported approximately 31% of
their electricity production. In contrast, US net electricity imports from abroad represented only
1% of total electricity consumption.

To account for electricity trade, we implement a two-step procedure. First, we compute each
state’s (as well as Canada and Mexico’s) primary energy mix used in electricity production and
remove any primary energy associated with net electricity exports. Second, we partition the
country into three distinct electricity pools — the Eastern, Western, and Texas grids — following
U.S. Environmental Protection Agency (2024). These pools reflect grid infrastructure and the
resulting limitations on interconnection and electricity trade10. We account for trade across pools
and within each region and allocate to net-importing states their proportional share of primary
energy consumed indirectly through imported electricity. A full description of the procedure is
provided in section A.2 of the appendix.

Descriptive statistics of the final dataset and of the primary energy consumption changes
10For a depiction of the grid infrastructure as of 2025, see figure A.1 in the appendix.
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Table 1: Descriptive Statistics

Energy Consumption

Coal
(Tn BTU)

Gas
(Tn BTU)

Petr
(Tn BTU)

NP
(Tn BTU)

P
(Tn BTU)

Electricity
(Bn kWh)

Pop
(Mn)

GDP
(Bn USD 2019)

Og. Adj. Og. Adj. Og. Adj. Og. Adj. Og. Adj.

Avg 388 388 497 498 634 634 85 88 1,574 1,574 246 6 343
SD 383 366 666 665 701 702 92 93 1,560 1,600 226 7 419
Min 0 0 4 4 64 64 0+ 0+ 79 80 16 0+ 22
Max 1,695 1,694 4,750 4,760 4,498 4,498 626 668 10,111 10,127 1,622 40 3,230
Mdn 299 267 277 275 463 463 49 56 1,167 1,165 191 4 209

P25 71 109 147 147 200 200 19 19 642 580 85 2 85
P75 521 576 558 548 775 775 124 129 1,858 1,956 318 7 439
N 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584 1,584
IQR 450 467 412 401 575 575 105 110 1,216 1,376 234 5 354

Notes: The dataset includes 48 states and spans 1990 to 2022. Energy and population data are from the EIA’s SEDS.
GDP data is from the BEA’s Regional accounts data. All units are indicated in parenthesis. “Coal”, “Gas”, “Petr”, indi-
cate primary energy consumption of coal, naturas gas, and petroleum, respectively. “Electricity” depicts electricity
consumption. “P” is pollutant energy primary consumption whereas “NP” is clean energy’s. The subheaders “Adj.”
and “Og.” indicate whether or not the values include primary energy consumption from electricity trade among US
states, and with Canada, and/or Mexico, respectively. A “+” superscript indicates that the value was positive before
rounding.

induced by our procedure are reported in table 111. We further document the impact of our
adjustments in section A.2 of the appendix. On average, clean energy consumption increased
by roughly 2% while dirty energy consumption rose by less than 1%. This differential primarily
reflects the clean energy composition of Canadian electricity imports. Judging by the interquartile
range, the cross-sectional variation in clean and dirty energy consumption increased slightly.
Western states experienced more increases in dirty energy shares, whereas the majority of Mid-
Atlantic and Eastern states saw reductions. The largest percentage drops occurred in Rhode Island
and Delaware, where the clean energy share, in Btus of dirty energy, tripled on average. These
states initially exhibited very low clean energy shares (less than 1% overall, and 2% in 2020).

Changes in polluting energy’s composition, relevant for our empirical analysis, were modest.
The most notable shift occurred in coal’s share during 2020. Several states retired coal plants
during the 2010s but continued to import electricity from coal-intensive states. For example,
California and Maine saw their coal shares double, starting from very low initial levels (less than
1%). Similar patterns emerged in Vermont andMassachusetts, which lack operational coal plants.
These observations underscore that significant changes were confined to states with highly spe-
cialized generation infrastructure. By accounting for electricity trade, we incorporate primary
energy indirectly imported from other states, thereby internalizing trade’s effect on the energy
consumption mix.

11The “Og.” sub-headers indicate the values of energy consumption without accounting for electricity trade. The
values in sub-columns “Adj.” include primary energy consumed indirectly through electricity imports.
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4 Empirical Approach
This section shows how we account for the price of clean energy and presents our identifica-

tion strategy.

4.1 The Price of Clean Energy

The cost structures of fossil and renewable energy sources differ fundamentally. Fossil energy
costs are largely driven by variable fuel expenses. Consistent with standardmacroeconomic prac-
tice, we thus use fossil fuel prices to proxy for the price of dirty energy (Hassler et al., 2021). In
contrast, renewable energy costs are predominantly shaped by upfront capital expenditures — in-
cluding infrastructure, permitting, land acquisition, and financing —which are typically sunk and
difficult to observe directly (Arkolakis and Walsh, 2024). Although the levelized cost of energy
(LCOE) offers a long-run average cost estimate, its limited time-series coverage and sensitivity to
state-specific policies and geographic factors prevents its consistent use in our analysis.

Nuclear power occupies a distinct position among clean energy sources. Unlike renewables,
it requires a fuel component and has operational flexibility, allowing it to play both a baseload
and lower frequency load-following roles. Consequently, its effective cost reflects not only capital
and fuel expenditures but also variable costs tied to output adjustments, such as depreciation and
retrofitting (International Atomic Energy Agency, 2018). This distinction is especially relevant in
the first half of our sample, when nuclear accounted for over 66% of clean electricity on average,
and in practice functioned as the only scalable clean energy source. Between 1990 and 2010, its
capacity factor rose dramatically, from 66% to 91.1%, while its annual electricity output increased
by roughly 40%, from 576, 862 to 806, 968million kWh (U.S. Energy Information Administration,
2025). Thereafter, the sharp decline in aeolic — and later solar — power generation costs fuelled
the rise in clean energy consumption, with their share increasing from 3% in 2006 to 37% in 2022.
Accordingly, our measurement of clean energy prices must consider the evolution of the clean
energy frontier, adding further complexity to the task.

Rather than attempting to directly measure clean energy costs, we adopt an indirect approach
to estimating the price of non-polluting energy. Specifically, we exploit the dynamics of the
power generating sector’s electricity composition — the main source of electricity production
— and end-use electricity prices, as these trends primarily reflect shifts in the relative prices of
different energy sources. Figure 3 illustrates this relationship. Figure 3a overlays normalized
LCOE estimates for wind and solar for new power plants from International Renewable Energy
Agency (2024) with dirty energy prices. Figure 3b compares electricity prices with the share of
clean electricity. We can observe that electricity prices broadly follow polluting energy prices,
the main source of electricity in the US. In turn, shifts in electricity source shares match changes
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in relative prices. For instance, a sharp fall in wind and solar LCOEs during the 2010s coincides
with a significant increase in the clean electricity share from 32% to 42%.

(a) LCOEs and Dirty Energy Prices (b) Electricity Prices and Clean Energy Share

Figure 3: Electricity Generation and the Price of Clean Energy.
Notes: The price of electricity is normalized relative to 1990. The price of dirty energy and the wind LCOE
estimates are normalized relative to 2004, when wind’s electricity share started to rise. Photovoltaic’s
LCOE estimates are normalized to 2010 when the series starts. All prices are adjusted for inflation. LCOE
prices are directly taken from International Renewable Energy Agency (2024).

Taken together, these observations highlight the relationship between electricity prices, the
composition of energy inputs in electricity generation, and the relative prices of clean and dirty
energy sources. More importantly, they underscore the potential to leverage electricity market
dynamics to estimate the implicit price of clean energy. To formalize this idea, we adopt a variant
of the framework used by Papageorgiou et al. (2017)12 and assume that electricity is produced
using a CES function that combines clean and dirty energy sources,

Ee
i,t =

(
(Ae,D

i,t Ee,D
i,t ) ν−1

ν + (Ae,C
i,t Ee,C

i,t ) ν−1
ν

) ν
ν−1

whereEe
i,t is total electricity produced,E

e,D
i,t is the amount of dirty energy consumed by electricity

generation, and Ee,C
i,t the amount of electricity produced by clean sources. Ae,D

i,t and Ae,C
i,t are

the respective unobservable share parameters, again dependent on time to allow for varying
technological adaptability. Under competitive markets, the first order condition for clean energy
is

Ee,C
i,t =

(
P C

i,t

P e
i,t

)−ν

(Ae,C
i,t )ν−1Ee

i,t. (5)

12Unlike their approach, we use actual energy consumption rather than installed capacity, because the SEDS only
records the latter’s from 2008 onward. Notwithstanding, the dynamics of clean installed capacity and clean electricity
production are very similar as we show in section B.1 of the appendix.
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Taking log-differences and rearranging yields our clean energy price proxy

P̂ C
i,t = P̂ e

i,t − 1
ν

Êe,C
i,t

Ee
i,t

+ ν − 1
ν

Âe,C
i,t . (6)

While we do not attempt to measure this proxy directly, we exploit the implied relationship
in our empirical strategy. As such, we briefly assess the relevance of equation (6). Using the
symmetric first-order condition for dirty energy, we regress the average electricity-specific dirty
energy price in the United States on the average price of electricity and the national share of dirty
electricity, all expressed in log-differences. The full estimation results are reported in table B.1 in
section B of the appendix. For our purposes, it suffices to note that the statistical association is
substantial, with an R2 of 58%, which rises to 68% when a time trend is included. Although we
acknowledge that equation (6) does not capture all of the complexities of electricity market oper-
ations, and that this simple exercise has notable limitations13, we interpret the high explanatory
power as supportive evidence of its usefulness to capture the evolution of clean energy prices,
which is our primary objective.

Finally, two additional considerations are pertinent to our empirical exercise. First, electric-
ity markets in the United States have not always been characterized by competitive access to
the electricity grid or by fully competitive supply of electricity, a feature we abstracted from
in our derivation (Borenstein and Bushnell, 2015). Because our identification strategy relies on
exogenous shifts in supply costs, this issue does not pose a problem for our analysis; we can
subsume any mark-up term into the unobserved productivity parameter, Ae,C

i,t
14. Second, as in

equation (4), the productivity parameters are unobservable. To address this, we instrument for
prices and shares in our estimation procedure.

4.2 Identification Strategy

Equipped with equation (6) we can replace P C
i,t in equation (4) to obtain

ÊD
i,t

EC
i,t

= −σ
P̂ D

i,t

P e
i,t

− σ

ν

Êe,C
i,t

Ee
i,t

+ σ
ν − 1

ν
ÂC

i,t + (σ − 1)
ÂD

i,t

AC
i,t

. (7)

Equation (7) still pins down σ and, although the share parameters remain unobserved, all the
other variables are measurable in the data.

13In particular, the embedded endogeneity suggested by the sign of Êe,C
i,t

Ee
i,t

’s coefficient.
14Ae,C

i,t ≡ µ
1

ν−1
i,t Ãe,C

i,t , where µi,t is the mark-up, whichmay depend on prices and quantities, and Ãe,C
i,t is the actual

unobserved productivity parameter. The mark-up may also capture fixed costs, such as those related to electricity
distribution infrastructure, which are not explicitly modelled here.
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The empirical counterpart of equation (7) is

ÊC
i,t

ED
i,t

= β
P̂ D

i,t

P e
i,t

+ γ
Êe,C

i,t

Ee
i,t

+ ei,t. (8)

We can quantify σ if we are able to consistently estimate β in equation (8). Direct OLS estimation

is biased due to endogeneity stemming from the unobserved variables, σ (1−ν)
ν

Âe,C
i,t + (σ − 1) ÂD

i,t

AC
i,t
,

captured by the error term, ei,t. Notably, the environmental macroeconomics literature has doc-
umented the relationship between aggregate energy efficiency and fluctuations in dirty energy
prices (Hassler et al., 2022; Känzig andWilliamson, 2024). Even after controlling for such country-
wide trends through time fixed effects, residual state-specific price variation may remain corre-
lated with local demand shifters.

To address these concerns, we instrument for both P̂ D
i,t

P e
i,t
and Êe,C

i,t

Ee
i,t
. Although γ is not our primary

parameter of interest, both variables must be instrumented to consistently estimate β. This is
because the relative price of dirty energy and electricity are jointly determined with the clean

energy share, implying that E( P̂ D
i,t

P e
i,t

· Êe,C
i,t

Ee
i,t

|Xi,t) ̸= 0. Consequently, relying solely on an instrument
for the relative prices risks biasing our estimates through a bad control problem, since the clean
energy share itself correlates with the error term15 (Angrist and Pischke, 2009).

4.2.1 Instrumenting for the Relative Prices

We leverage the US states’ cross-sectional variation in energy mixes to instrument for the relative
price of dirty energy vis-à-vis electricity. To motivate our approach, note that the price of dirty
energy is a consumption-weighted average of the prices of fossil fuels and biomass, so that P D

i,t =∑
k

Ek
i,t

ED
i,t

P k
i,t. As such, taking a first-order approximation around time t − 1, we have that

P̂ D
i,t =

∑
k

ωD,k
i,t−1 · P̂ k

i,t (9)

where the weights, ωD,k
i,t−1 ≡ Ek

i,t−1
ED

i,t−1

P k
i,t−1

P D
i,t−1

, are the relative expenditure shares of each input. Sim-
ilarly, due to the CES assumption the price of electricity is defined by the usual aggregator,
P e

i,t = (∑X∈{C,D}(Ae,X
i,t )ν−1(P e,X

i,t )1−ν)1/(1−ν). Taking its first-order approximation around time
t−1, and using the symmetric first-order condition of equation (5), we have that electricity prices

15We thank Jaeeun Seo for highlighting and clarifying this issue.
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change according to

P̂ e
i,t =

Ee,D
i,t−1

Ee
i,t−1

P D
i,t−1

P e,D
i,t−1

P̂ e,D
i,t

in response to fluctuations in dirty energy prices. Plugging in the first-order approximation of
P̂ e,D

i,t , equation (9), we have that

P̂ e
i,t =

∑
k

ωe,k
i,t−1 · P̂ e,k

i,t , (10)

where the weights, ωe,k
i,t−1 ≡ Ee,D

i,t−1
Ee

i,t−1

Ee,D,k
i,t−1

Ee,D
i,t−1

P l
i,t−1

P e,D
i,t−1

P e,D
i,t−1

P e
i,t−1

= Ee,D,l
i,t−1

Ee
i,t−1

P l
i,t−1

P e
i,t−1

, are the expenditures shares
of each dirty energy input in electricity production. As such, we can combine equation (9) and
equation (10), to conclude that the ratio of dirty energy to electricity prices should, to a first order,
move according to

P̂ D
i,t

P e
i,t

=
∑

k

ωk
i,t−1 · P̂ k

i,t, (11)

where the weights, ωk
i,t−1 ≡ ωD,k

i,t−1−ωe,k
i,t−1, are the differences in dirty expenditure shares between

the overall economy and the electricity generating sector. We assume that input prices move in
tandem, so that P̂ k

i,t = P̂ e,k
i,t .

Equation (11) provides a similar set-up to the standard shift-share instrumental variables
(SSIV) formulation introduced in Bartik (1991) which we explore to build our instrument. The use
of distinct energymixes as a source of variation is not unprecedented. Ganapati et al. (2020) and Jo
(2024) have used similar approaches to instrument for energy cost changes at the industrial plant
level. The main methodological difference lies on the denominator of the electricity price weight:
they consider the total expenditure in fuels for electricity generation whereas we consider the
total revenue in electricity sales, motivated theoretically above. In our exercise we also only con-
sider petroleum, coal and natural gas when building the instrument. We exclude biomass because
of its comparatively hyper-localized nature. Our instrument thus takes the following form

(
P̂ D

i,t

P e
i,t

)IV

=
∑

k

ωk
i · P̂ k

t , (12)

where P̂ k
t are the common price shifters, and ωk

i are the time-invariant state-specific shares.
As our shares we fix the weights in equation (11) to their 1990 values, ωk

i ≡ ωk
i,1990, the first

year of our sample which we exclude from the estimation exercise. We present the geographical
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variation of each weight in figure C.6 of the appendix. As price shifters we use the annual log
growth rates in US relevant commodity price indices. Specifically, we take log-differences of
the annual averages of the West Texas Intermediate index for crude oil (wti), the US’s Central
Appalachian coal spot price, and the Henry Hub’s natural gas spot price. While the latter two
prices are literally thewholesale values of the corresponding commodities, thewti is the reference
price for crude oil, and not for petroleum products per se. Nevertheless, it is by far the latter’s
main input, explaining more than 97% of state petroleum prices’ time-series variation in the US16.
We plot the time series of the log growth rates for all three commodity prices in figure C.8 of the
appendix.

Our identification assumption then takes the form:

E(P k
t E(ωk

i ei,t|Xi,t)|Xi,t) = 0, ∀k. (13)

In words, condition 13 implies that we do not expect states to systematically increase (decrease)
their relative use of clean/dirty energy if not due to a decrease (increase) in the price of clean/dirty
energy (Chodorow-Reich et al., 2021). The validity of our instrument relies then on the exogeneity
of the commodity price fluctuations relative to state-specific energy demand. Since commodity
markets are well integrated around the world, it is natural to think that states act as price takers
and have a diminutive impact on price fluctuations (Kilian and Zhou, 2024). A natural worry is
that some US states play an outsized role as suppliers of oil and gas, and so may be differentially
affected by their prices. In section 5.2 we show that excluding them from our sample does not
change the results. Finally, the inclusion of time and state fixed effects means that we require
exogeneity relative only to the changes in state-specific energy demand shifters.

Control Variables and Threats to Identification. In our baseline specification, we include
a lag of the dependent variable to account for possible auto-correlation in the error-term. Fol-
lowing Borusyak et al. (2024), we include state fixed-effects to capture the heterogeneous SSIV
weights, ∑k ωk

i ̸= 1, and control for other potential non-observables. We also insert one lag of
the instrument so as to capture only the contemporaneous effects of commodity prices. This ap-
proach is akin to only using the innovations in the time series of prices, following the exclusion
of the autoregressive component. In our set-up this does not seem necessary since both oil and
gas behave as random walks17. In comparison, coal is third-order integrated. We show later that
including another lag of the instrument does not change our results.

16Using principal component analysis, we find that the first common component explains around 98.5% of the
variation in annual state-level petroleum prices across the US. Regressing the first principal component on annual
wti changes, we get an R2 = 98.8%. Multiplying the two we reach our value. See section C.1 in appendix for more
details.

17We use The Bayesian Information Criterion on a set of ARMA models to determine the optimal lag structure.
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Because we only work with three commodity shifters, the concern may arise that the law of
large numbers condition from Borusyak et al. (2022) does not apply to our setting. The relevant
margin of variation in our case is not just the number of shifters, but also the number of times we
observe them since we are working with panel data. Notwithstanding, we add additional controls
to minimize the problem of potential endogeneity from ωk

i — on top of fixing the weights before
the estimation sample starts. As additional controls we include lagged weather patterns such as
the logarithm of average precipitation and temperature in the region, important proxies for the
suitability and effectiveness of renewable energy sources18. Additionally, we include a lag for the
state-specific average generating power plant’s vintage for each dirty energy source19. This en-
sures that we account for changes in energy infrastructure quality induced by commodity price
fluctuations. This is especially relevant for coal reliant states where infrastructure is generally
older20. Lastly, to control for changes in the energy composition, we include a lag for the share of
manufacturing, and a lag for the share of energy related activities, such as mining and utilities,
in states’ gross domestic product21. In table C.3 of the appendix we show that our instrument’s
shares are actually very related to exogenous state conditions. Climate, state’s geographical char-
acteristics —mediated by population density, and their location relative to oil and gas supply hubs
can explain between 32% to 72% of total cross-sectional variation in relative fuel expenditure,
depending on the inclusion of PADD22 fixed effects.

4.2.2 Instrumenting for the Clean Electricity Share

To instrument for the growth rate in the clean electricity share in state i we use the average of
the growth rates for states located outside of the electrical grid to which i belongs:

(
Êe,C

i,t

Ee
i,t

)IV

=
∑
p∈P

Êe,C
p,t

Ee
p,t

/∑
p∈P

1 (14)

where P is the set of states located outside i’s electrical grid region. This selection, although
conservative, ensures that state-specific developments in electricity markets, be it from electrical
infrastructure development or changes in market structure, are not directly related to our in-
strument. This is justified by the electrical grids’ partial isolation and distinctive regulatory and
operational bodies, described in section 3. At the same time, the clean electricity share’s long-run

18These are computed using the National Center for Environmental Information’s US Climate Divisional Database.
19These figures are computed using the EIA’s form EIA-860M.
20As of 2021, the average American operating coal-fired generating unit was 45 years old, five years short of the

average retirement age (U.S. Energy Information Administration, 2021).
21The data come from the BEA’s regional accounts. Until 1997 we use the industrial classifications D for industry,

and B and 49 for energy activities. After, we use classifications 31-33, and 21 and 22, respectively.
22Petroleum Administration for Defense Districts.
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evolution has largely been driven by common factors, justifying our instrument’s relevance. In
the beginning of our sample, the political curtailment of new nuclear power plants lead to a rise
in the capacity factor of nuclear power. In the second half in turn, the global decrease in clean
energy hard costs, starting in the mid to late 2000s, together with greener federal and state-level
policies incentivized the installation of solar and wind energy infrastructure, raising the overall
share of clean electricity.

We try alternative approaches as well, such as the internal instrument proposed by Arellano
and Bond (1991) or a different delimitation based on states’ electric power transmission system
operators. We present their results in section C.2 of the appendix. While the first-stage F-statistic
is weak for the first instrument, neither estimate challenges our main conclusions. Furthermore,
this allows us to conduct a Sargan test for exogeneity. Importantly, we cannot reject the null
hypothesis for any of the proposed instruments.

4.3 Regression Model
Following our identification strategy, our final regression model takes the form

ÊD
i,t

EC
i,t

= β
P̂ D

i,t

P e
i,t

+ γ
Êe,C

i,t

Ee
i,t

+ Γ′Xi,t + αi + αt + ei,t (15)

whereXi,t are the additional controls discussed in section 4.2, and αi and αt are the state and year
fixed-effects. We can then identify σ from β = −σ, our main object of interest, and ν indirectly
through γ = β/ν.

5 Results
This section presents the results from our main exercise and the robustness checks under-

taken. We draw some policy implications from the estimates.

5.1 Baseline Results

We use two-stage least squares with both instruments for P̂ D
i,t

P e
i,t

and Êe,C
i,t

Ee
i,t

to estimate equa-
tion (15). Our sample spans 1991 to 2022 with the exclusion of the pandemic period23 and contains
all contiguous US states24. To reduce the influence of extreme values, we trim observations at the
1st and 99th percentiles of the dependent variable or the two main explanatory variables25.

23Including 2020 further decreases our point estimates, but affects statistical precision significantly. This may
reflect the extreme behaviour of commodity prices during this year. Ending the sample in 2019 instead does not
meaningfully change our results. A full analysis of the sample period selection is provided in section D.1 in the
appendix.

24We combine the District of Columbia with Maryland.
25This excludes 64 of the 1440 observations comprising our original sample.
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Table 2: Elasticity of Substitution Estimates

OLS Pseudo-IV IV
(1) (2) (3) (4)

P̂ D
i,t

P e
i,t

-0.2162∗∗∗ -0.5768∗∗ -0.5299∗∗ -0.4969∗∗

(0.0649) (0.2411) (0.2529) (0.2261)
Êe,c

i,t

Ee
i,t

-0.9521∗∗∗ -0.9296∗∗∗ -0.9207∗∗∗ -0.9571∗∗∗

(0.0311) (0.0369) (0.0809) (0.0778)
Observations 1,376 1,376 1,376 1,376
Adjusted R2 0.91110 0.90026 0.90148 0.90453
F-statistic 105.70 27.967 2.6854 0.77695

1st stage F-statistic, P̂ D
i,t

P e
i,t

22.694 33.768 32.317

1st stage F-statistic, Êe,c
i,t

Ee
i,t

77.643 76.861

State fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
Extra Controls No Yes No Yes

Notes: Results of regressing equation (15). Column (1) presents the results under OLS estimation. Column
(2) presents the results when only instrumenting for P̂ D

i,t
P e

i,t
. Column (3) presents the results when instru-

menting also for Ê
C,e
i,t

Ee
i,t

. Column (4), in addition, includes the extra control variables. All regressions are
unweighted and include a lag of the dependent variable. “Extra controls” refers to the annual lags of the
states’: average coal, natural gas and petroleum power plant vintages, the logarithm of the past 10 years’
average precipitation and temperature, and the shares of energy activities, and of industry in gdp. The
sample includes the 48 contiguous US states and spans 1991 to 2022, excluding 2020. The 1% tails are
excluded. Standard errors are clustered at the year and state level. The standard errors are in parenthesis.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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We report the results with and without the additional controls, together with the OLS esti-
mates and the regression instrumenting only for the relative prices in table 2. We cluster standard
errors at the year and state level.26. This is a more conservative approach than the recommenda-
tion by Borusyak et al. (2024) to cluster by year — the shifter level. Following Chodorow-Reich
(2020), we do not weight the regressions. Weighting the regressions produces similar results,
which we report in table 4.

The point estimates of our preferred specification, presented in column (4), indicate that the
elasticity of substitution between primary clean and dirty energy consumption is approximately
0.50, while this value increases slightly to 0.52 for the electricity generation sector. Focusing
on the former figure, at the expense of lower precision, 0.50 is significantly higher than the
point estimate of 0.22 implied by OLS, in column (1). In contrast, the full IV estimate is smaller
than the Pseudo-IV figure, 0.58, presented in column (2), using only the instrument for relative
prices. This is reassuring as we would expect symmetrically induced biases due to the opposing
correlations between the clean electricity share and the relative dirty energy price, and the state-
specific shifters. Finally, excluding the additional controls marginally increases our estimate to
0.53.

Discussion. Before comparing our results to the existing literature and drawing policy impli-
cations, it is worth noting that our relatively low elasticity estimates are consistent with recent
US experience with wind and solar energy generation. Since 2010, clean energy consumption
has risen markedly — by 42 percentage points. However, this expansion appears less dramatic
when juxtaposed with the evolution of generation costs: wind LCOE estimates, for example,
have declined by a remarkable 74 percentage points — a dynamic closely followed by photo-
voltaic technology (International Renewable Energy Agency, 2024). Over the same period dirty
energy prices exhibited volatility but, on average, hovered around 94% of their 2010 level, while
total dirty energy consumption decreased by only 4 percentage points.

To contextualize these developments, figure 5 plots the relative consumption of clean energy
against the relative price of dirty energy, both computed as log-ratios and normalized to zero in
2010. Between 2010 and 2022, the relative price of dirty energy rose by 1.47 log-points, while the
relative use of clean energy increased by only 0.39 log-points. These figures imply an “observed
elasticity” of approximately 0.27. Ending instead in 2019, prior to the Covid-19 pandemic, yields
a slightly higher value of 0.32. Alternatively, because the LCOE estimates are for new power
plants, we can lag the clean energy prices by three years for example27. This would still increase
the implied value, but marginally to 0.28. Notably, all figures are smaller than our estimate of

26A state- or year-clustered bootstrap yields very similar standard errors.
27Lagging by four years would yield a value of 0.30, by five 0.23.
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0.50, supporting our findings. In addition, this exercise speaks to concerns regarding the time
horizon of our elasticity estimate.

Figure 5: Clean Energy Consumption vs Dirty Energy Prices.
Notes: The figure plots two series for the US: the log-difference in average energy prices between polluting
and non-polluting sources, and the log-difference in energy consumption between clean and dirty energy.
Both series are normalized to 100 in 2010 prior to the log transformation. As a proxy for clean energy prices,
we use onshorewind LCOE estimates for new power plants in the US from International Renewable Energy
Agency (2024); analogous results using photovoltaic estimates are shown in figure D.11 in appendix. All
prices are adjusted for inflation.

Our results for the elasticity of substitution are indeed much smaller than those implied by
previous studies. The key reasons for this discrepancy are both the lower implicit electricity
generation elasticity of 0.52 — compared to 1.8 in Papageorgiou et al. (2017), and the inclusion
of all energy consumption, not just business energy. In section 6.2 we formalize this point and
highlight specifically the importance of accounting for residential and non-stationary energy
consumption.

5.2 Robustness Checks

We now present some of the robustness exercises conducted28. Each column of table 3 rep-
resents a separate exercise. The first three columns deal with concerns about the validity of our
shift-share instrument. First, we want to ensure that our results arise from contemporaneous
variation in energy prices and not from the dynamic effect of past fluctuations. While this may
not be a concern with natural gas and crude oil prices, which are essentially random walks, coal

28We present further checks in section D.1 of the appendix — specifically related to our sample’s period. The
results remain similar.
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Table 3: Robustness Checks

(1) (2) (3) (4) (5)
P̂ D

i,t

P e
i,t

-0.4880∗∗ -0.6081∗∗ -0.4877∗∗ -0.5702∗∗ -0.4443∗∗∗

(0.2372) (0.2765) (0.2107) (0.2712) (0.1463)
Êe,c

i,t

Ee
i,t

-0.9554∗∗∗ -0.9419∗∗∗ -0.9951∗∗∗ -0.9497∗∗∗ -0.9572∗∗∗

(0.0815) (0.0806) (0.0730) (0.1019) (0.0604)
Observations 1,329 1,376 1,292 1,376 639
Adjusted R2 0.90189 0.89759 0.91346 0.89987 0.89864
F-statistic 0.67431 0.78672 0.80514 0.10215 0.51799

1st stage F-statistic, P̂ D
i,t

P e
i,t

30.981 27.337 32.178 29.503 19.714

1st stage F-statistic, Êe,c
i,t

Ee
i,t

70.092 77.733 80.590 75.837 29.697

State fixed effects ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓
Extra Controls Yes Yes Yes Yes Yes

Notes: Results of robustness checks. Column (1) includes an extra lag of the SSIV instrument. Column (2)
uses foreign commodity price indices. Column (3) excludes TX, NM and ND. Column (4) includes state-
specific quadratic trends. Column (5) groups the observations in 2-year windows. All regressions are
uneweighted. The sample includes the 48 contiguous US states and spans 1991 to 2022, excluding 2020
(and 2019 in column (5)). The 1% tails are excluded. Standard errors are clustered at the year and state
level. The standard errors are in parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
levels, respectively.
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prices have been persistently decreasing and a BIC-based choice criterion would conclude that
they are integrated of order 3. As such, in column (1) we present our results with two lags of the
SSIV instrument instead of one. The estimate decreases marginally to 0.49.

A second concern is that our national price shifters for natural gas and coal are not entirely
exogenous to states’ energy demands since their markets may not be as integrated as crude oil’s is
at a global scale — due to transportation costs for example. To appease that concern we replicate
our exercise using instead foreign price indices as shifters. Specifically we use the price of brent
crude, the main European index for crude oil, the index for natural gas in Japan, and the coal
index for Australian coal. The first is retrieved from FRED while the other two come from the
World Bank’s Commodity Markets Outlook. The results are provided in column (2). The point
estimate increases to 0.61 but is still within the range admitted by our baseline specification, and
remains considerably below the previous literatures’ values.

Another threat to our identification strategy is the fact that some US states have an outsized
influence in world energy markets, playing significant roles in the supply of natural oil and gas.
The importance of this industry may skew their composition of energy and how they react to
price fluctuations. To show that this bears no influence on our results, we repeat our regressions
excluding Texas, New Mexico and North Dakota. The results are presented in column (3). The
figures are again essentially unchanged with σ decreasing to 0.49.

On top of these, in column (4) we further try to account for the differential trends in energy
composition across states by adding a state-specific quadratic time-trend. The point estimate of
σ increases to 0.57, but is still within our main specification’s statistical bounds.

Finally, to account for the potential inertia in energy adjustments not captured by yearly data,
we aggregate our data to two-year buckets. Now, each observation represents a span of two years,
instead of one. The SSIV weights are still set to the relative expenditure share of 1990 and the
data span remains the same. We again trim the 1% tails. We provide the results in column (5).
The elasticity level decreases further to 0.44 while the statistical precision increases.

Geographical Sensitivity. We do not weight our main regressions, following the recommen-
dation of Chodorow-Reich (2020). At the state level, using weights may introduce bias in the
estimated coefficients and affect the power of the first-stage regressions. Moreover, OLS and
shift-share instrumental variables naturally weight observations according to their contribution
to the variability of the regressors (Borusyak et al., 2022). However, it is important to understand
which states drive our results. To assess this, we re-estimate our main specification, equation (15),
sequentially excluding one state at a time. We map the difference between these estimates and
our baseline value in figure 6. Our results are largely insensitive to the exclusion of any single
state. The most significant deviations arise from excluding Oklahoma and Vermont, resulting in
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estimates of 0.57 and 0.39, respectively.

Figure 6: Geographical Sensitivity.
Notes: The map displays the difference between our baseline aggregate elasticity estimate, 0.50, and the
result from re-estimating equation (15) when excluding the respective state. All re-estimated coefficients
are significant at the 10% significance level.

To address potential concerns regarding outlier influence and national representativeness, we
re-estimate our main regression using three proxy variables for state size as weights: the loga-
rithm of population, real GDP, and total dirty energy consumption. These weighted specifications
reduce the influence of smaller states on our results. As shown in table 4, the resulting elasticity
estimates remain close to the unweighted baseline and are generally smaller.

5.3 Policy And Welfare Implications

Taken at face value, our results have stark implications for energy policy. For example,
through the lenses of the canonical model of Acemoglu et al. (2012), we would conclude, fol-
lowing proposition 3, that an economy-wide clean energy subsidy is not enough to enact the
long-run transition away from dirty energy use. This conclusion thus renders ineffective the
US’s preferred approach to incentivize clean energy. At such a low elasticity of substitution level,
it is impossible to counteract the incentives to use dirty energy alongside clean sources. The only
way to ensure the transition away from fossil fuels in the long-run is to enact the optimal tax
on ghg emissions, ensuring the necessary disincentive to accompany the clean energy increase
with more fossil fuel usage. The logic is made clear in Casey et al. (2023). If energy as a whole
is productive, increasing energy use, no matter its source, incentivizes more energy use. With
low enough elasticity of substitution between energy sources, dirty energy consumption is thus
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Table 4: Weighted Regressions

Population Dirty Energy Consumption GDP
(1) (2) (3)

P̂ D
i,t

P e
i,t

-0.4722∗ -0.4665∗ -0.4286∗

(0.2310) (0.2340) (0.2335)
Êe,c

i,t

Ee
i,t

-0.9665∗∗∗ -0.9643∗∗∗ -0.9811∗∗∗

(0.0775) (0.0772) (0.0761)
Observations 1,376 1,376 1,376
Adjusted R2 0.90622 0.90691 0.90907
F-statistic 0.77378 0.76838 0.77678

1st stage F-statistic, P̂ D
i,t

P e
i,t

31.264 30.736 29.916

1st stage F-statistic, Êe,c
i,t

Ee
i,t

75.831 75.142 74.703

State fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
Extra Controls Yes Yes Yes

Notes: Results from weighted instrumental variable estimation of equation (15). Column (1) weights by the
logarithm of population. Column (2) weights by the logarithm of total dirty energy consumption. Column
(3) weights by the logarithm of real gdp. The sample includes the 48 contiguous US states and spans 1991
to 2022, excluding 2020. The 1% tails are excluded. Standard errors are clustered at the year and state level.
The standard errors are in parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels,
respectively.
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promoted by an increase in clean energy availability. Consequently, at this elasticity level, Casey
et al. (2023) argue that, all else equal, clean energy subsidies could increase ghg emissions in the
short-run.

In addition to this, Acemoglu et al. (2012) conclude that under gross energy complementarity,
σ < 1, the only way to attain the long-run energy transition is by halting economic growth. A
generalized linear hypothesis test of our preferred specification rejects the notion that clean and
dirty energy types are gross substitutes in the United States. Although not all our robustness
checks can reject this hypothesis, all specifications agree that the elasticity must be much closer
to unity than previously thought.

Finally, recent work highlights the importance of the aggregate elasticity for understanding
the distributional burden of the energy transition. Building on a large literature emphasizing the
non-homotheticity of energy consumption29 — particularly after the Russian invasion of Ukraine,
Hochmuth et al. (2025) show that poorer households may be over 50% worse off than their richer
counterparts as a result of the European energy transition. These outcomes are highly dependent
on the elasticity of substitution between green and dark energy in final energy use. Although this
parameter does not exactly match our concept of aggregate elasticity, we show in section 6 that
it must be below unity. This low substitutability suggests even greater distributional disparities
than those inferred by Hochmuth et al. (2025). Moreover, it has strong policy implications: for
instance, the optimal carbon tax nearly doubles when the assumed elasticity falls from 3 to 2,
so our findings should further amplify this value. In contrast, Cruz and Rossi-Hansberg (2024)
find that σ has no impact on the projected regional variation in climate change-induced damages.
However, they show that by the end of the next century, assuming an energy elasticity of 0.5 —
exactly our point estimate — leads to average welfare losses that are 27% higher than under a
scenario where the elasticity is 2.7.

6 From Macro to Micro
In this section we lay out a model inspired by Oberfield and Raval (2021) that helps to dissect

the concept of aggregate elasticity of substitution between polluting and non-polluting energy.
In practice our estimates reflect not a unique aggregate parameter, but the combination of several
“lower-level” elasticities.

29See for example Kharroubi and Smets (2024), Känzig (2023) or Auclert et al. (2024) who emphasize the importance
of non-homothetiticty in energy consumption for the propagation and welfare effects of energy related shocks.
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6.1 Bottom-up Model
Consider n distinct energy using sectors30. In line with the evidence provided in the literature

(Hassler et al. (2022), Känzig and Williamson (2024)), similarly to Jo (2024), we pose that their
production functions take a Leontief form

Yj = min{Hj/gj, Ej}

where, as in section 2, Hj is a combination of other factors of production31, and Ej is the energy
consumption bundle. Further, we assume that each sector j can consume directly either dirty
energy or electricity, so that their energy bundle is a CES composite of both forms of energy,

Ej =
(

(ae
j)

1
σj (Ee

j )
σj −1

σj + (1 − ae
j)

1
σj (Ed

j )
σj −1

σj

) σj
σj −1

.

The electricity generation sector operates under full competition and produces electricity for the
whole economy using either dirty or clean energy. Its production function also takes a CES form,
so that

Ee =
∑

j

Ee
j =

(
(ae) 1

ν (Ee,C)
ν−1

ν + (1 − ae) 1
ν (Ee,D)

ν−1
ν

) ν
ν−1

.

We consider a unique electricity generation function. Notwithstanding, this set-up can also ac-
commodate sector-specific electricity production functions — we would instead require distinct
share and elasticity parameters. Some residential clean electricity for example is produced by
households’ own solar panels which are not connected to the electricity grid. Also, part of the
industrial sector produces some of its own electricity from primary dirty energy consumed. In
practice, our framework can also accommodate this by adjusting the sectoral breakdown. In
contrast, this model structure ignores the supply side’s network structure. We leave such a de-
velopment for future work.

Finally, consumers consume a CES bundle of all sectors in the economy

Cj =
(

n∑
j=1

D
1
ε
j Y

ε−1
ε

j

) ε
ε−1

.

Because the elasticity of substitution is inherently a partial equilibrium concept, we assume
that the prices of dirty and clean energy are unique, so that P d

j = P e,D = P D, P e,C = P C . In
30We denominate these sectors as energy-using because their output is directly provided to consumers. This can

also include the direct provision of higher-order energy directly to consumers.
31We assume that their price does not depend on energy prices.
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connection to our empirical exercise, the aggregate elasticity of substitution is then the change
in the overall economy’s relative clean energy consumption when dirty energy’s relative price
changes, so that

σ ≡
d ln EC

ED

d ln P D

P C

=
d ln ECP C

EDP D

d ln P D

P C

+ 1

where EX = ∑
j EX

j , X ∈ {C, D} is the total energy of type X consumed directly, or indirectly,
by sector j. We recast the elasticity in terms of expenditures, instead of quantities, because it
helps when thinking about its determinants. Together with an in-depth analysis, in section E of
the appendix we prove that σ takes the form laid out in proposition 1.

Proposition 1. In section 6.1’s model, the aggregate elasticity of substitution between clean and

dirty energy, σ = d ln EC

ED

/
d ln P D

P C , takes the form

σ = χε̃ + (1 − χ)σ̃. (16)

χ, ε̃ and σ̃ are defined as

χ =
∑

j

θj
(αj − α)2

α(1 − α)

ε̃ − 1 =
∑

j

θj
(αj − α)∑

j θj(αj − α)2 ε
P e

j

P D(1 − εsE
j )

σ̃ = αe,Cσ′ + (1 − αe,C)ν ′

where

σ′ − 1 =
∑

j

θj
αj(1 − αj)∑

j θjαj(1 − αj)
αd

j (σj − 1)

is the average elasticity between electricity and primary dirty energy consumption adjusted for the
latter’s share in each sector, and

ν ′ − 1 =
∑

j

θj
αj(1 − αj)∑

j θjαj(1 − αj)
(1 + (1 − αd

j ) αe,C

1 − αe,C
)(ν − 1)

is the electricity generation sector’s elasticity accounting for higher order effects. θj = P E
j Ej∑

j
P E

j Ej
is

sector j’s share in the economy’s total energy expenditure, where P E
j are the sector-specific energy

price indices. sE
j = P H

j Hj

P E
j Ej+P H

j Hj
is sector j’s energy expenditure share, αd

j = P DEd
j

P DEd
j +P eEe

j
its share
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of primary dirty energy expenditure in total energy expenditure, and αj = P CEC
j

P CEC
j +P DED

j
its share of

(indirect) clean energy in total energy expenditure. ε
P E

j

P D = d ln P E
j /P C

d ln P D/P C is sector j’s energy bundle’s
price elasticity vis-a-vis the price of dirty energy. Lastly, αe,C = P CEe,C

P CEe,C+P DEe,D is clean energy’s
share of total electricity generation costs.

Interpretation. As in Oberfield and Raval (2021), equation (16) is a convex combination32 of
two effects. The first, captured by ε̃, reflects the sectoral dispersion in sector-specific energy price
sensitivities, and the associated reallocation of consumption. The second, captured by σ̃ reflects
the economy’s average capacity to replace dirty with clean energy — which we denote as the
“aggregate technological elasticity”. As a result of our layered energy production structure, this
depends both on the energy end-using sectors’ capacity to replace primary dirty energy with
electricity, and on the electricity generation sector’s own capability to replace dirty generation
sources by clean ones. Intuitively, the first effect affects the consumption of clean energy by
redirecting primary energy consumption towards electricity. Because only αe,C of this electricity
is clean, the amount of clean energy increases (relatively) by this share. In turn, when electricity
turns to greener sources, only the dirty proportion, (1 − αe,C), can become greener. The higher
order terms in turn capture this effect on the redirected primary energy consumption.

6.2 The Technological Elasticity

Equipped with equation (16), we can back out the average elasticity of substitution for the
energy end-use sectors, σ′, from the estimates laid out in table 2. To do so, we follow the EIA’s
breakdown and consider only three sectors: residential, goods and services production, and trans-
portation. While this breakdown differs from the typical economic delineations, it accommodates
the use of the SEDS data. In addition, we use tables 2.7 and 6.2D from the Bureau of Economic
Administration’s (BEA) Fixed Assets, and National Income and Product Accounts to obtain the
expenditure in other factors of production, namely capital goods — measured through invest-
ment, and labour — measured through employee compensation, respectively. We focus on 2022,
the latest available data, but also present 2007 which we will use in section 6.3. We present the
full calibration of the expenditure shares in table 5. In section E.3 of the appendix we detail all
the steps taken to compute these figures. In brief, we use estimated LCOE prices for renewables,
and marginal costs for nuclear and fossil fuels to derive the share of clean electricity expendi-
tures for each year. Using the first-order conditions, we are able to retrieve ae which, through
the CES price index, allows us to compute a virtual price for electricity. Based on the electricity
expenditure shares we assign the electricity expenditure of each end-use sector to clean or dirty

32χ ≤ 1 (Oberfield and Raval, 2021).
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sources. Everything else is measured directly from the data. We set the consumption elasticity
parameter to 0.33, taken from column (6) in table I of Comin et al. (2021). Their methodology is
preferred because the non-homothetic utility formulation allows for different income elasticities
while maintaining a constant price elasticity of substitution. On top of this, their sectoral span is
very large, covering a great part of households’ expenditures in all the sectors we consider.

Table 5: Expenditure Shares Calibration

Production Residential Transportation
2007 2022 2007 2022 2007 2022

θj 27.85% 25.71% 21.16% 21.05% 50.98% 53.24%
αj 17.10% 26.99% 17.45% 29.61% 0.04% 0.04%
sE

j 2.81% 2.12% 49.60% 45.67% 37.29% 36.65%
αd

j 38.98% 37.77% 37.74% 31.72% 99.86% 99.91%
αC,e 28.02% 43.37%

Notes: US expenditure shares derived from the EIA’s SEDS, and BEA’s FAA and NIPA. Full description of
procedure in section E.3. θj = P e

j Ej∑
j

P e
j Ej

is sector j’s share in the economy’s total energy expenditure.

sE
j = P E

j Ej

P E
j Ej+P H

j Hj
is sector j’s energy expenditure share, αd

j = P DEd
j

P DEd
j +P eEe

j

its share of primary dirty

energy expenditure in total energy expenditure, andαj = P CEC
j

P CEC
j +P CED

j

its share of (indirect) clean energy

in total energy expenditure. αC,e = P CEC,e

P CEC,e+P DED,e is clean energy’s share of total electricity generation
costs and is common to all sectors.

We attribute to clean energy sources 43.37% of total electricity generation expenditures. This
is in line with the share of clean electricity, which in 2022 represented about 42% of total elec-
tricity generation. The bulk of the economy’s energy spending comes from transportation, rep-
resenting around 53% of total spending, followed by the productive and residential sectors, with
approximately 26% and 21%, respectively. This disparity is explained by transportation’s reliance
on refined, and thus higher added-value, fuels such as gasoline and jetfuel, and its market struc-
ture — where most consumption is undertaken downstream of a long supply chain, in particular
for road vehicles.

In contrast, clean energy is mostly consumed by the productive and residential sectors, with
similar shares of around 27% and 30% of their total energy expenditures, respectively. Surpris-
ingly, the clean expenditure share in transportation is almost inexistent. This is mostly explained
by the dominance of road and air transportation in the US. Even then, the electrification share of
rail transportation is very low, with diesel-powered trains prevailing. One caveat must be placed
on this number: it is a lower bound of the real share of clean energy spending in transportation.
This is the result of the SEDS’s methodology which assigns all electricity consumed by houses to
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the residential sector. Since a great part of all electric vehicle (EV) charging is done at home, this
naturally misses out on some of the transportation sector’s electricity share. Notwithstanding,
in 2022 EVs represented a tiny fraction of just 0.86% of total light-duty vehicles registered in
the US, while plug-in hybrids and hybrid EVs together accounted for just 2.5% (U.S. Department
of Energy, 2022). In addition, the SEDS already accounts for charging ports outside of homes.
As such, we would not expect a meaningful difference if we were able to account for at-home
personal vehicle charging.

Together with our estimates for ν and σ, our calibration implies that σ′ ≈ 0.81. This means
that energy end-users’ average elasticity between electricity and primary dirty fuels is consid-
erably higher than the capability of the electricity sector to replace polluting energy sources by
non-polluting ones, consistent with the findings in the previous literature. This implies that the
economy’s technical ability to replace dirty by clean energy, σ̃ = αe,Cσ′ + (1 − αe,Cν ′) ≈ 0.56
— slightly higher than the aggregate elasticity, σ. This difference is explained by the reallocative
effect of demand, which counteracts the economy’s technological ability to replace dirty by clean
energy. This effect is determined both by the low elasticity of substitution of demand and by the
dispersion in energy mixes.

Notice that consuming more goods and residential services has a positive effect on the en-
ergy mix, as these sectors spend indirectly a higher share of their energy expenditures on non-
polluting source than the economy’s average, α. In contrast, the transportation sector is very
negatively skewed towards polluting energy, so its services have a negative impact on the econ-
omy’s energy mix. Under complementarity across sectors, since ε = 0.33 < 1, consumer theory
dictates that the share of goods whose prices go up increase their share in total spending (Mat-
suyama, 2023). In other words, the use of transportation decreases proportionally less than its
price increases. This implies that an assessment of the economy’s ability to change its energy mix
based on the initial bundle of expenditures — the technological elasticity term, σ̃, is insufficient.
Accounting for this adjustment on the consumption mix thus dampens it.

Connection to Previous Literature. To end this subsection we note that our aggregate elas-
ticity estimate is significantly smaller than the values presented by previous studies. This is
explained by the distinct scopes. We here account for all energy consumed in the economy —
and thus estimate the aggregate elasticity, as opposed to the sectoral or plant-level elasticities
like in Papageorgiou et al. (2017) and Jo (2024), respectively. The difference is made clear by
proposition 1.

Notwithstanding, note that our aggregate elasticity value does not necessarily contradict the
business and industrial elasticities reported in these studies. To illustrate this, we consider an
alternative calibration. We assign an elasticity of 3 to the goods and services sector, consistent
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with Jo (2024). For the transportation and residential sectors, we use values of 0.3 and 0.1, re-
spectively — reflecting the price elasticity of gasoline and residential heating reported in Kilian
and Zhou (2024) and Davis and Kilian (2011). Keeping our initial calibration for the electricity
sector’s elasticity, equation (16) yields an aggregate elasticity of approximately 0.62 —within the
relevant confidence bounds provided by our main specification in table 2.

6.3 Variable Elasticity of substitution

We conclude this section by examining whether the aggregate elasticity of substitution in-
creases with the share of clean energy. This hypothesis follows from the general Variable Elas-
ticity of Substitution (VES) theory, formalized by Revankar (1971), and adapted to our context.
Recent work by Jo and Miftakhova (2024) demonstrates that, at the aggregate level, this mecha-
nism could significantly accelerate the energy transition, thereby reducing its costs. Notably, it
might overturn the "de-growth" prediction implied by Acemoglu et al. (2012), when starting out
with an aggregate elasticity below unity — in accordance with our point estimate of 0.50.

To test the VES hypothesis, we examine both the time-series and cross-sectional variation in
clean energy use in the US throughout our sample period. We begin by analyzing the time-series
variation, re-estimating the regression model specified in equation (15) on a rolling basis. We use
15-year windows, which effectively reduces the sample size for each regression by approximately
half. The SSIV weights are fixed to the year preceding each window. The resulting estimates,
alongside the moving average of the clean energy share, are presented in figure 7. Our findings
indicate that the estimates remain relatively stable over time, despite the clean energy share
increasing substantially, particularly after 2008. Although statistical uncertainty is considerable,
the point estimates do not suggest any upward trend.

In a second exercise, we examine the cross-sectional heterogeneity in the aggregate elasticity
across US states. To do so, we interact the relative price of dirty energy vis-à-vis electricity with
the logarithm of either the lagged or the median clean energy share for each state, calculated over
our sample period. If the elasticity increases with the state’s share of clean energy, this coefficient
should be negative33. The results, presented in table 6, do not provide clear evidence of this. Both
estimates are statistically indistinguishable from zero. In addition, the lagged interaction term is
positively signed.

Neither exercise provides definitive evidence supporting the VES hypothesis. From the per-
spective of our model, these results further indicate that the economy’s average ability to substi-
tute away from dirty energy, σ̃, has likely remained stable. To investigate this, we recalculate the
aggregate elasticity using the 2007 expenditure shares — the first year in our window, as shown
in table 5, while keeping the baseline elasticity parameters unchanged.

33Higher share decreases are point estimate, which is the symmetric of the elasticity.
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Table 6: Cross-Sectional Heterogeneity in σ

(1) (2)
P̂ D

i,t

P e
i,t

-0.4490∗ -0.6175∗

(0.2529) (0.3607)
P̂ D

i,t

P e
i,t

× Median(ln EC
i,t

ED
i,t

) -0.0083
(0.0157)

Êe,c
i,t

Ee
i,t

-0.9683∗∗∗ -0.9334∗∗∗

(0.0870) (0.1035)
P̂ D

i,t

P e
i,t

× ln EC
i,t−1

ED
i,t−1

0.0217
(0.0445)

ln EC
i,t−1

ED
i,t−1

-0.0057
(0.0088)

Observations 1,376 1,376
Adjusted R2 0.90787 0.89043
F-statistic 0.71228 0.73333

1st stage F-statistic, P̂ D
i,t

P e
i,t

21.598 21.498

1st stage F-statistic, P̂ D
i,t

P e
i,t

× Median(ln EC
i,t

ED
i,t

) 226.48

1st stage F-statistic, Êe,c
i,t

Ee
i,t

51.210 47.493

1st stage F-statistic, P̂ D
i,t

P e
i,t

× ln EC
i,t−1

ED
i,t−1

165.53
Additional Controls Yes Yes

Notes: Results of interacting our main regressor with the states’ sample-median or lagged share of clean
energy. The sample includes the 48 contiguous US states and spans 1991 to 2022, excluding 2020. The
1% tails are excluded. Standard errors are clustered at the year and state level. The standard errors are in
parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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Figure 7: Rolling Regressions of equation (15)
Notes: Rolling regressions of equation (15) with 15 year windows. The windows are trimmed at the 1%
level. SSIV weights are set to the year before the window starts. The shaded areas are the 90% confidence
intervals. Standard errors are clustered at the state and year level. The yellow line represents the natural
logarithm of the rolling average ratio of clean to dirty energy consumption measured in Btus.

Compared to 2022, the share of expenditure in clean electricity sources was 15.35 percent-
age points lower. This is explained by the lower clean electricity prices — a result of using the
marginal cost for nuclear power which was the dominant source of clean energy in 2007, and by
the CES assumption. In terms of end-use sectors, the expenditure share of primary dirty energy in
2007 was approximately 6.02 percentage points higher in the residential sector, while remaining
roughly unchanged for the transportation and production sectors. Similarly, energy’s share of
residential services’ total costs was 3.93 higher, remaining unchanged for the other two sectors.
In contrast, the share of clean energy expenditure increased significantly in goods and services
production, and residential use, by 9.89 and 12.16 percentage points, respectively. No noticeable
change existed in transportation. Lastly, the weight of the latter sector’s in the economy’s energy
expenditures increased by 2.26 percentage points, in detriment of the production sector.

Despite the significant increase in the share of clean energy, recomputing the aggregate elas-
ticity for 2007 yields a value of 0.54, slightly higher than our baseline estimate of 0.50, but not
significantly different — in agreement with our empirical findings. Thus, we conclude that no
significant changes could have occurred in the sectoral elasticities.

The Importance of Micro Elasticities Our previous exercises suggest that an increase in the
clean energy share may not necessarily be paired with growth in sectoral elasticities. In such a
case, equation (16) implies that the aggregate elasticity is constrained by the lower-level elastici-
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ties. A key question arises then: how does the aggregate elasticity, holding all else equal, change
as the clean energy share increases? To shed light on this, we conduct two distinct exercises,
each reflecting credible scenarios for the US’s medium horizon: i) an increase in the share of
clean electricity, and ii) a rise in the electrification of the transportation sector. We demonstrate
that the impact in the aggregate elasticity crucially relies on the source of the increase.

In the first scenario, we analyse the effect of increasing the clean electricity share by 10%,
while maintaining the other expenditure shares and sectoral elasticities from our baseline cali-
bration34. Using equation (16), we find that the aggregate elasticity would basically remain un-
changed at 0.50.

In a second scenario, we examine the impact of replacing 10% of the transportation sector’s
primary dirty energy consumption35 (measured in Btus) with an equivalent amount of electric-
ity36. In this case, recomputing the elasticity of substitution reveals an increase of 0.04 in the
aggregate elasticity, reaching 0.54. This rise in the elasticity is associated with the transition to
cleaner energy, driven by substantial electrification within the transportation sector. Neverthe-
less, the change in the aggregate elasticity remains relatively modest.

These two thought experiments suggest that future developments in the American energy
mix may or may not increase the elasticity of substitution. Whether the elasticity rises funda-
mentally depends on the source of the cleaner energy. Nonetheless, any changes are likely to
remain modest unless there is a relationship — not modelled here — between the clean energy or
electricity share, and the relevant micro elasticities of substitution.

Some literature points to a positive relationship between the two. For instance, Jo and Mif-
takhova (2024) identify such a mechanism among French manufacturing firms, where an increase
in the electricity share correlates with a higher elasticity of substitution. This feedback loop could
be particularly relevant for road transportation. Recent studies suggest that expanding charging
infrastructure could strengthen the link between elasticity and the electricity share. For example,
Cole et al. (2023) find that increasing charging infrastructure in the US would likely promote elec-
tric vehicle adoption. Since infrastructure availability naturally scales with rising EV demand, a
positive feedback between elasticity and the electricity share in transportation appears plausi-
ble. Similarly, Fang et al. (2025) show that expanding electric high-speed rail in China fosters EV
adoption. Implementing similar investments in parts of the US could have a substantial impact
on the flexibility of transportation’s energy use.

In contrast, the literature also highlights the decreasing ability to integrate additional clean
34This can be achieved by a simultaneous increase in the price of clean energy, P C , and in the ideal clean energy

share, ae. For details, see the appendix’s section E.4.
35This adjustment involves increasing the share of electricity parameter in transportation, ae

j , while adjusting the
Dj ’s to preserve sector sizes.

36Based on the EIA’s electricity-to-Btu conversion factor of 3.412, as detailed in section 3.
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electricity when its share is already significant. In particular, the intermittency of renewables can
trigger a cannibalization effect where the correlated structure of electricity supply reduces the
profitability of clean energy projects (Reichenberg et al., 2023). Potential solutions to mitigate
this effect include increased battery storage, demand management, or improvements in the geo-
graphical interconnection of the electrical grid (López Prol et al., 2020). However, some of these
solutions are still in their technological infancy or present significant implementation challenges
in the US. On the other hand, several studies have highlighted the potential effectiveness of car-
bon taxes in alleviating this issue (Brown and Reichenberg, 2021; Liebensteiner and Naumann,
2022).

7 Conclusion
We introduced a novel methodology to estimate the aggregate elasticity of substitution be-

tween polluting and non-polluting energy sources in theUnited States by leveraging cross-sectional
variation in states’ energy mixes. A key component of our empirical strategy involves inferring
the price of clean energy from the behaviour of the electricity-generating sector. Our central
estimate, around 0.50, is substantially lower than commonly assumed in the literature. This has
important policy implications: broad, untargeted subsidies may be insufficient on their own to
drive a successful energy transition. Moreover, our results underscore the potentially high and
unevenly distributed costs of decarbonizing the economy.

To support our empirical approach, we developed a bottom-up model in the spirit of Oberfield
and Raval (2021), which clarifies the mechanisms driving the aggregate elasticity. Two main
factors account for our relatively low estimates. First, the elasticity of substitution in electricity
generation, estimated at approximately 0.52, constrains the economy’s ability to integrate clean
energy rapidly. This limitation dampens the higher elasticity in energy end-use sectors, which
our calibration suggests must be around 0.81 on average. As a result, the overall “technological
elasticity of substitution” for the economy is approximately 0.56. Second, the combination of a
low elasticity of demandwith limited use of clean energy in transportation leads to further under-
adjustment in the energy mix. Consumption’s under-reaction to relative price changes explains
the remaining difference between the aggregate and technological elasticities. These findings
highlight the importance of adopting a comprehensive perspective on energy consumption — an
angle that much of the existing literature neglects.

We also find no evidence of an increase in the aggregate elasticity over the past two decades,
despite substantial growth in clean energy consumption. This suggests that rising clean energy
shares do not automatically translate into greater substitutability between energy types. The ab-
sence of such a positive feedback loop could hinder progress toward a cleaner economy. As a
result, policy should focus not only on incentivizing clean energy adoption through prices, but
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also on enhancing each sector’s capacity to substitute between energy sources. The transporta-
tion sector, in particular, emerges as a critical target for intervention.

While this paper offers new insights into the elasticity of substitution between energy sources,
many questions surrounding the economy’s ability to adopt clean energy remain open. In partic-
ular, incorporating the complexities of electricity generation, as in Gowrisankaran et al. (2024),
into dynamic equilibrium models is essential to understanding the dynamics of the energy tran-
sition (Desmet and Rossi-Hansberg, 2024). Abuin (2025) makes important progress in this direc-
tion. Additionally, a better grasp of the feedback between clean energy (or electricity) shares and
sectoral energy elasticities of substitution could enhance the accuracy of our long-term projec-
tions. Jo and Miftakhova (2024), for instance, provide compelling evidence of such mechanisms
in the context of French manufacturing firms. Finally, while this paper has focused on the broad
distinction between polluting and non-polluting energy, Acemoglu et al. (2023) underscore the
importance of understanding the distinct roles individual energy sources can play in decarboniz-
ing the economy — a point especially relevant when microfounding individual’s energy choices,
as in Acemoglu et al. (2016).
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Online Appendix

A Data preparation

A.1 Non-combustible Consumption
In order to account for non-combustible energy, we closely follow note 3 of the EIA’s Monthly

Energy Review’s section 1 (U.S. Energy Information Administration, 2025). We exclude entirely
from petroleum consumption the industrial use of miscellaneous petroleum products, waxes,
special naphthas, petrochemical feedstock, residual and distilate fuel oil. We also remove the
entire consumption of lubricants, and asphalt and roal oil. Lastly, we remove a proportion of
non-combustile use petroleum coke and hydrocarbon gas liquids following the MER’s national
estimates for the year. For coal consumption, we again use the national estimated proportion of
non-combustible use of coal coke in manufacturing for the adjustment. Finally, we follow the
same national average procedure to remove a proportion of the natural gas consumed by the
industrial sector. We follow the same methodology for expenditures.

A.2 Electricity Trade
To account for electricity trade, we compute the electrical generating sector’s energy mix for

eachUS state. We then identify the net exporting states and remove the amount of primary energy
used to produce their exported electricity. Note that this assumes no consignment. In reality it is
possible that the exporting electricity comes from a specific subset of power plants and energy
sources. We undertake a similar exercise for Canada and Mexico. We obtain their electricity
sources’ shares from EMBER (2024). Because we do not have information on their fossil fuel
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energy efficiency, nor on their respective expenditure, we use the US’s yearly averages to input
for these. This procedure is needed to back-out the amount of primary dirty energy consumed
in electricity production and the respective expenditure. Finally, we combine the information
on US’s energy imports (Administration, 2024) with Canada’s energy exports (Canada Energy
Regulator, 2025)37 to compute the share of net electricity imported into the US from Canada
and/or Mexico.

In a second step, we consider three American major grid regions, the Eastern, Western and
Texas grids38, following U.S. Environmental Protection Agency (2024). Their delineation is de-
termined by the electrical distribution infrastructure which is minimally connected between the
three regions. For expository purposes we display a snapshot of the American electricty grid in
figure A.1. In turn, the interconnection within the three grids is high. In practice, even within
these grids further distinctions based on infrastructure, market access or legal oversight are war-
ranted. Specifically, different sub-regions have different electricity transmission organizations
that regulate the access and distribution of electricity. This alternative nonetheless is infeasible
for two reasons. The first is that multiple organizations operate in some states, especially in the
Midwest and Northwest of the US. The second is that we would still not be able to surpass the
lack of knowledge of the origin (source) of electricity transmitted.

Figure A.1: Snapshot of American Electrical Grid

Using the previous regional delineations we assume that each grid constitutes a unique pool
of electricity trade so that any electricity is exported into the pool and then imported propor-
tionally across net importing states. As a result, we assign proportionally to net importing states

37We use the national trade values and not the state-to-state trade statistics because we do not have information on
the energymixes of Canadian states. Moreover, given our pooling approach, the SEDS provides sufficient information
to understand the source of imports/exports.

38The western grid is made up of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon,
Utah, Washington, Wyoming. The remaining states apart from Texas are assigned to the eastern grid.

43



the average primary energy used to generate the imported electricity in each pool. To determine
this pool, we first compute the net imported electricity for each grid. Having only 3 US grids and
knowing imports and exports allows us to determine the origins (destinations) of imported (ex-
ported) electricity. We then aggregate the imported electricity’s energymix in each net importing
grid together with that from net exporting states located within the grid. Using these values, we
add to every net importing state the respective proportion of primary energy imported through
the grid’s pool.

We plot some relevant metrics to assess the impact of accounting for electricity trade in fig-
ure A.2, figure A.3, and figure A.4.

Figure A.2: Clean-to-dirty Energy Adjustment
Notes: The map plots the log-point change in the ratio between Non-Pollutant and Pollutant Energy Con-
sumption due to the electricity trade adjustment.

B The price of Clean Energy
We present the results from regressing the dirty energy first-order condition in table B.1. The

equation estimated takes the form P̂ D
t = β0 +β1P̂ e

t +β2
Êe,D

t

Ee
t

+ε, excluding and including a time-
trend, γ0t,respectively. Notice that the values of β2 are expected to be negative, whereas we get a
positive value. This reflects the underlying endogeneity. Nonetheless it does not contradict our
point that the implied relationship is strong — as demonstrated by the high explanatory powers.
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Figure A.3: Effect of Adjustment on Natural Gas
Notes: The map plots the log-point change in the share of Natural Gas on Dirty Energy Consumption as a
result of the electricity trade adjustment.

Figure A.4: Effect of Adjustment on Coal
Notes: The map plots the log-point change in the share of Coal on Dirty Energy Consumption as a result of
the electricity trade adjustment. The grey shaded states for 2020 are Vermont and Massachusetts who did
not use coal directly. Their actual values after the electricity trade adjustment are 7813 and 79134, which
represent 7.58% and 6.92% of total dirty energy consumed, respectively. They net imported 65% and 70%
of their total electricity consumption, respectively.
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Table B.1: Electricity FOC Regression

P̂ D
t

(1) (2)
Constant 0.0202 -0.0695∗

(0.0259) (0.0391)
P̂ e

t 3.078∗∗∗ 2.564∗∗∗

(0.6496) (0.6079)
ÊD,e

t

Ee
t

4.072∗∗∗ 5.758∗∗∗

(1.034) (1.098)
t 0.0069∗∗∗

(0.0024)
Observations 31 31
R2 0.58379 0.67966

B.1 Capacity vs Consumption

Equation (6), which serves as a proxy for clean energy prices to generate the regression model
described in equation (15), uses the growth rate of clean electricity consumption instead of spe-
cific production inputs — such as installed capital — commonly employed in the literature (e.g.,
Papageorgiou et al. (2017)). This choice is driven by data limitations: installed net summer ca-
pacity39 series in the SEDS database only begin in 2008. Nevertheless, we demonstrate that the
dynamics of installed capacity and clean electricity production are closely aligned over the avail-
able period. Specifically, figure B.5 compares the logarithmic growth rates of installed net sum-
mer capacity across all clean energy sources with states’ clean electricity production40, revealing
a strong linear relationship. Meaningful changes in capacity, are typically accompanied by equiv-
alent variations in production. At the same time, variations in production can occur even when
capacity remains constant. This can happen due to unexpected annual climacteric conditions
for example. On top of practicality, using consumption data facilitates accounting for electric-
ity trade, a task that would be substantially more complicated if we relied on installed capacity
figures.

39The maximum output that a generating unit, plant, or system can supply to the grid under normal summer
conditions, net of the electricity used onsite.

40Contrarily to the empirical procedure, we here use state production of clean electricity. This compares directly
with the installed capacity — measured within the state.
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Figure B.5: Clean Energy Capacity vs Production
Notes: The scatterplot compares states’ annual logarithmic growth rates in clean electricity production to
net installed summer capacity, all measured in kwh. The line is a fitted regression line. Series spans 2009
to 2022. It excludes Delaware until 2011 because its power generating sector did not produce any clean
electricity before that (but the residential sector, as defined by the EIA, did).

C Identification

C.1 Shift-share instrument

Shift-share Weights. In figure C.6 we present the geographical distribution of shift-share
weights for each sub-type of energy. Petroleum and natural gas tend to have a higher relative
preponderance in other uses apart from electricity generation. In turn, coal’s expenditure share
is usually higher in electricity generation, hence the negative values. Although the scales are dif-
ferent, in absolute value, the variation is similar across petroleum and natural gas, and smaller in
coal. The distribution across the US is typically symmetric, especially between coal and natural
gas. Places where coal has a relatively more preponderant role, have lower weights for gas and
vice-versa.

The commodity price time-series used as shifters to construct our shift-share instrument are
presented in figure C.8. Although they are very correlated across time, there is relevant orthog-
onal variation.

CrudeOil andPetroleumPrices. Webegin by computing the principal components of annual
state-level petroleum prices across the US throughout our sample. We present the corresponding
scree plot in figure C.9. After computing the first principal component, we regress it on the the
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(a) Natural Gas (b) Coal

(c) Petroleum

Figure C.6: Shift-share Weights
Notes: The maps present the US variation in expenditure share differences for commodity j between the
overall economy and electricity generation, ωj

i ≡ ωD,j
i,1990 − ωe,j

i,1990, for each of the three energy sub-types
considered, natural gas, petroleum and coal, in 1990. The scales are different across the maps.
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Figure C.8: Commodity Price Variation
Notes: Time-series plot of log growth rates in the three commodity prices considered: the West Texas
Intermediate for Petroleum (Oil), the US’s Central Appalachian coal spot price (Coal), and the Henry Hub’s
natural gas spot price (Nat Gas).

price of crude oil, using the West Texas Intermediate. We present the results in table C.2.

Determinants of the SSIV Shares. Table C.3 presents the results from regressing the SSIV
shares - the difference expenditure weights in 1990 - on different exogenous state-specific factors.

C.2 Alternative Instruments for Electricity Shares

We propose two alternative instruments for the electricity shares. The first increases the
partition of our main instrument, now computing the growth rate average of states outside of
state i’s regional electricity grid determined by its RTO/ISO or other market form. The second
instead uses the third lag of the log of relative clean energy shares. We use the third instead of the
second lag of the shares because we have included a lag of the shift-share instrument. We present
the results in that order in table C.4. This also allows us to test for endogeneity. With that in
mind we conduct a Sargan test by including the three instruments in the same IV regression. The
corresponding test statistic is 1.82, and so we do not have statistical evidence to contradict the
hypothesis of exogeneity for any of the instruments.
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Table C.3: Exogenous determinants of Relative Weights (1990)

ω
petr
i ω

ngas
i ωcoal

i

(1) (2) (3) (4) (5) (6)
Constant -0.70 1.6∗∗∗ -0.57∗∗

(0.42) (0.38) (0.23)
ln Population (89) -0.02 -0.001 0.03∗∗∗ 0.005 0.009 0.02∗∗∗

(0.01) (0.01) (0.008) (0.01) (0.006) (0.006)
ln Person per Sq. mile (89) -0.06∗∗∗ -0.08∗∗∗ 0.03∗∗∗ 0.06∗∗∗ -0.01∗∗ -0.03∗∗∗

(0.01) (0.02) (0.009) (0.01) (0.005) (0.007)
ln Avg Precipitation (80-89) 0.09∗∗ 0.10∗∗ -0.06∗∗ -0.06∗∗ 0.04∗ 0.04∗

(0.04) (0.04) (0.03) (0.02) (0.02) (0.02)
ln Avg Temperature (80-89) 0.15∗ 0.20 -0.32∗∗∗ -0.37∗∗∗ 0.02 0.06

(0.08) (0.15) (0.08) (0.12) (0.06) (0.07)
ln Distance to LA 0.07∗∗ 0.04 -0.06∗∗ -0.04∗∗ 0.01 -0.002

(0.03) (0.03) (0.02) (0.02) (0.01) (0.01)
ln Distance to Cushing, OK 0.04∗∗∗ 0.04∗∗ -0.01 -0.008 0.02∗∗ 0.02∗∗

(0.01) (0.02) (0.03) (0.04) (0.009) (0.009)
ln Distance to WY 0.03∗∗ 0.008 -0.02 -0.010 0.002 -0.008

(0.01) (0.02) (0.01) (0.009) (0.007) (0.007)
Observations 48 48 48 48 48 48
R2 0.59244 0.71986 0.50842 0.63664 0.31585 0.52385

PADD+ fixed effects ✓ ✓ ✓

Notes: Results from regressing the SSIV weights on pre-determined variables. The sample includes the 48
contiguous US states. The standard errors are Heteroskedasticity-robust and are presented in parenthesis.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

50



Figure C.9: Petroleum Price’s Scree Plot Table C.2: Petroleum Regression on wti

1st PC
(1)

Constant -16.67∗∗∗

(0.3852)
WTI 0.3367∗∗∗

(0.0068)
Observations 33
R2 0.98767

Notes: The figures on the scree plot represent each principal component’s variance share. The regression
table presents the results from regressing the main principal component on the West Texas Intermediate
annual average price. The sample spans 1990 to 2022.

Table C.4: Alternative Instruments for Clean Electricity Share

(1) (2) (3)
P̂ D

i,t

P e
i,t

-0.4989∗∗ -0.5673∗∗ -0.5297∗∗

(0.2258) (0.2294) (0.2179)
Êe,c

i,t

Ee
i,t

-0.9529∗∗∗ -0.7820∗∗ -0.9385∗∗∗

(0.0592) (0.2952) (0.0716)
Observations 1,376 1,329 1,329
Adjusted R2 0.90457 0.87852 0.89989
F-statistic 0.59969 0.42485 0.75909

1st stage F-statistic, P̂ D
i,t

P e
i,t

23.999 17.021 16.000

1st stage F-statistic, Êe,c
i,t

Ee
i,t

39.353 4.6515 38.579
Sargan Test-statistic 2.0685

State fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
Extra Controls Yes Yes Yes

Notes: Results when using alternative instruments for Ê
e,c
i,t

Ee
i,t
. Column (1) uses an alternative grid region

delineation. Column (2) uses the third lag of E
e,c
i,t

Ee
i,t
. Column (3) includes both instruments to conduct a

Sargan Test. The sample includes the 48 contiguous US states and spans 1991 to 2022, excluding 2020.
Standard errors are clustered at the year and state level. The standard errors are in parenthesis. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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D Results
Complements to Discussion. To complement our discussion, we plot the actual price evolu-
tion for clean and dirty energy, as well as total consumption, in figure D.10. This shows that the
trends in generation costs for wind and solar energy evolved very similarly. We replicate figure 5
using photovoltaic LCOE estimates in figure D.11.

Figure D.10: Energy Consumption and Prices.
Notes: Plot of pollutant and non-pollutant energy consumption and prices. Values normalized to 100 in
2010. LCOE estimates are from International Renewable Energy Agency (2024). All prices account for
inflation.

D.1 Further Robustness Checks

Alternative Samples. In order to show that our main policy conclusions are not driven by the
sample of shocks, we repeat the estimation of equation (15) with a sample now: i) ending before
the Covid-19 pandemic, in 2019; ii) including 2020, again trimming the 1% tails; iii) including 2020
but now using two-year windows; iv) excluding 2008; v) excluding 2009; and vi) not trimming
our main sample. We present the results in table D.5. Ending in 2019 slightly increases our
point estimate to 0.54. Excluding either 2008 or 2009, the years with the highest swings in fossil
fuel prices in our sample, decreases the point estimate to 0.47 and 0.46, respectively. Including
covid significantly decreases the point estimate to 0.38 and increases the standard errors. When
using 2-year buckets instead precision increases significantly. The estimate remains lower at
0.38. Finally, using the untrimmed sample increases the point estimate to 0.59. Doing so may be
problematic as it includes cases such as Vermont in 2015 who decommissioned a nuclear power
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Figure D.11: Relative Clean Energy Consumption and Relative Dirty Energy Prices.
Notes: The figure plots two series for the U.S.: the log-difference in average energy prices between pollutant
and non-pollutant sources, and the log-difference in energy consumption between clean and dirty energy.
Both series are normalized to 100 in 2010 prior to the log transformation. As a proxy for clean energy prices,
we use photovoltaic LCOE estimates from International Renewable Energy Agency (2024). All prices are
adjusted for inflation.

plant at the end of 2014, thus observing a massive decline in clean energy consumption — totally
unrelated to contemporaneous commodity price fluctuations.

E From Macro to Micro

E.1 Model

The proof follows very closely the steps detailed in (Oberfield and Raval, 2021).

Proof. First note that,

σ =
d ln EC

ED

d ln P D

P C

= 1 +
d ln ECP C

EDP D

d ln P D

P C

.

Define αj = P CEC
j

P CEC
j +P dED

j
to be the energy expenditure share of clean energy, where

ED
j = Ed

j + Ee
j ×

Ee,D
j

Ee
j

(17)
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Table D.5: Alternative Samples

(1) (2) (3) (4) (5) (6)
P̂ D

i,t

P e
i,t

-0.5438∗∗ -0.3777 -0.3792∗∗ -0.4715∗ -0.4615∗ -0.5871∗∗

(0.2440) (0.2625) (0.1600) (0.2548) (0.2490) (0.2787)
Êe,c

i,t

Ee
i,t

-0.9477∗∗∗ -0.9779∗∗∗ -0.9659∗∗∗ -0.9599∗∗∗ -0.9629∗∗∗ -0.8801∗∗∗

(0.0809) (0.0830) (0.0697) (0.0827) (0.0768) (0.0834)
Observations 1,292 1,421 687 1,328 1,340 1,440
Adjusted R2 0.90188 0.90677 0.90449 0.90542 0.90402 0.91210
F-statistic 0.70664 0.86305 0.57408 0.75453 0.72805 0.38809

1st stage F-statistic, P̂ D
i,t

P e
i,t

30.755 30.632 20.706 29.776 28.684 35.109

1st stage F-statistic, Êe,c
i,t

Ee
i,t

73.337 78.561 31.299 78.415 76.244 31.420

State fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Extra Controls Yes Yes Yes Yes Yes Yes

Notes: Results when changing the sample. Column (1)’s data ends in 2019. Column (2)’s includes covid.
Column (3)’s includes covid but uses 2 year buckets instead. Column (4) excludes 2008. Column (5) excludes
2009. Column (6) does not trim our main sample. The sample includes the 48 contiguous US states and
starts in 1991. All except column (5)’s data exclude the 1% tails. All regressions are unweighted. Standard
errors are clustered at the year and state level. The standard errors are in parenthesis. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels, respectively.
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is sector j’s total dirty energy consumed directly and indirectly through electricity, and

EC
j = Ee

j ×
Ee,C

j

Ee
j

(18)

is its total consumption of clean energy indirectly through electricity. Moreover, define α =
P CEC

P CEC+P DED = ∑
j θjαj to be the economy’s energy expenditure share of clean energy, where

θj = P e
j Ej∑

j
P e

j Ej
is sector j’s share in the economy’s total energy expenditure. Notice that ECP C

EDP D =
α

1−α
. Hence,

d ln ECP C

EDP D

d ln P D

P C

=
d ln α

1−α

d ln P D

P C

.

Using the chain rule and properties of logarithms, we have that

d ln α
1−α

d ln P D

P C

= 1
α(1 − α)

∑
j

(
θj

dαj

d ln P D

P C

+ αj
dθj

d ln P D

P C

)
.

Evaluating each term separately, and starting with dθj

d ln P D

P C

, we note that θj = sE
j

sE × T Cj

T C
, where

TCj = P E
j Ej + P H

j Hj is sector j’s total cost, with P E
j and P H

j its energy and H-factor price
indices, respectively, and sE

j = P E
j Ej

T Cj
is the share of energy spending in total cost - mutatis

mutandi for the whole economy when there is no subscript. Then,

dθj

d ln P D

P C

= θj
d ln θj

d ln P D

P C

= θj

(
d ln sE

j

sE

d ln P D

P C

+
d ln T Cj

T C

d ln P D

P C

)
.

Again, evaluating each term separately, we have that sE
j = P E

j Ej

P E
j Ej+P H

j Hj = P E
j

P E
j +P H

j gj
from the

Leontief assumption. Then

d ln sE
j

sj

d ln P D

P C

= ε
P E

j

P D(1 − sE
j ) (19)

where ε
P E

j

P D = d ln
P E

j

P C

d ln P D

P C

is the elasticity of sector j’s energy price index relative to dirty energy’s

price and we have used the fact that gj and P H
j are assumed constant.

In turn, note that TCj = µ−1PjYj by the CES demand assumption and homogeneity of the
CES production function, where µ is the mark-up, common to every sector. Moreover, note
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that Yj = Y

(
Pj

P

)−ε

Dj is sector i’s demand function. As such, T Cj

T C
=

µ−1PjY

(
Pj
P

)−ε

Dj

∑
j

µ−1PjY

(
Pj
P

)−ε

Dj

=

P 1−ε
j P ε

P 1−εP ε Dj =
(

Pj

P

)1−ε

Dj where P is the CES aggregate price index. Thus,

d ln T Cj

T C

d ln P D

P C

= (1 − ε)
d ln Pj

P

d ln P D

P C

since Dj is a constant parameter. Note that∑ θj = 1 =⇒ ∑
j

dθj

d ln P D

P C

= 0 so that∑j αj
dθj

d ln P D

P C

=∑
j(αj − α) dθj

d ln P D

P C

and any derivatives of aggregate variables disappear. As a result, we can

disregard d ln P

P C

d ln P D

P C

and only need to evaluate d ln
Pj

P C

d ln P D

P C

. From the CES demand function, we have
that Pj = µMCj , where µ is constant. The Leontief production function implies that MCj =

P E
j + P H

j gj but because P H
j gj are assumed constant, d ln

Pj

P C

d ln P D

P C

= P E
j

P E
j +P H

j gj
ε

P E
j

P D = sE
j · ε

P E
j

P D and we
can conclude that

d ln T Cj

T C

d ln P D

P C

= (1 − ε)sE
j · ε

P E
j

P D . (20)

Finally, combining equation (19) with equation (20), we have that

∑
j

αj
dθj

d ln P D

P C

=
∑

j

(αj − α)θjε
P E

j

P D(1 − εsE
j ). (21)

Turning to dαj

d ln P D

P C

we have that dαj

d ln P D

P C

= αj(1 − αj)
d ln

αj
1−αj

d ln P D

P C

. Evaluating
d ln

αj
1−αj

d ln P D

P C

, we find that

d ln αj

1−αj

d ln P D

P C

=
d ln P CEC

j

P C

d ln P D

P C

−
d ln P DED

j

P C

d ln P D

P C

.

Using the definitions in equation (17) and equation (18) together with the fact that we have as-
sumed a unique electricity production function,

d ln P CEC
j

P C

d ln P D

P C

=
d ln P eEe

j

P C

d ln P D

P C

+
d ln(P CEe,C

P eEe /P C)
d ln P D

P C
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and

d ln P DED
j

P C

d ln P D

P C

= αd
j

d ln P dEd
j

P C

d ln P D

P C

+ (1 − αd
j )
(

d ln P eEe
j

P C

d ln P D

P C

+
d ln(P e,DED

P eEe /P C)
d ln P D

P C

)
.

where αd
j = P DEd

j

P E
j Ej

. Combining both terms and defining αe,C = P CEC

P eEe , we have that

d ln αj

1−αj

d ln P D

P C

= αd
j

d ln P eEe
j

P DEd
j

d ln P D

P C

+ d ln αe,C

d ln P D

P C

− (1 − αd
j )d ln(1 − αe,C)

d ln P D

P C

. (22)

By the chain rule d ln αe,C

d ln P D

P C

= d ln αe,C

d ln P C

P e

× d ln P C

P e

d ln P D

P C

. The first order conditions of electricity demand
imply that

P CEe,C

P eEe
=
(

P C

P E

)1−ν

ae,C ≡ αe,C

Hence, d ln αe,C

d ln P C

P e

= (1 − ν). Similarly, d ln P e

P C

d ln P D

P C

= (1 − αe,C)41. Combining the two, we have that

d ln αe,C

d ln P D

P C

= (1 − ν) · −(1 − αe,C) = (ν − 1)(1 − αe,C). (23)

Symmetrically, we have that d ln(1−αe,C)
d ln P D

P C

= d ln(1−αe,C)
dαe,C

dαe,C

d ln P D

P C

= − 1
1−αe,C αe,C d ln αe,C

d ln P D

P C

. As a result,

d ln(1 − αe,C)
d ln P D

P C

= − αe,C

1 − αe,C
(ν − 1)(1 − αe,C). (24)

Lastly,
d ln(

P eEe
j

P DEd
j

)

d ln P D

P C

=
d ln(

P eEe
j

P DEd
j

)

d ln P D

P e

d ln( P D

P e

d ln P D

P C

. From the FOC of primary energy demand, we have that

d ln(
P eEe

j

P DEd
j

)

d ln P D

P e

= σj − 1. As before, d ln P D

P e

d ln P D

P C

= d ln P e

P D

d ln P C

P D

= αe,C . Hence,

d ln( P eEe
j

P DEd
j
)

d ln P D

P C

= (σj − 1)αe,C . (25)

41From the CES price index, P e = [(P D)1−νae,D + (P C)1−νae,C ]1/(1−ν). Taking derivatives we have that
dP e

dP C = ( P C

P e )−νae,C . Finally, from the FOC, we know that ( P C

P e )1−νae,C = αe,C . Together with the chain rule of
logarithms, we have our result.
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Replacing equations (23) to (25) into equation (22), yields

d ln αj

1−αj

d ln P D

P C

= αd
j (σj − 1)αe,C + (ν − 1)(1 − αe,C)

(
1 + (1 − αd

j ) αe,C

1 − αe,C

)
. (26)

Combining equation (21) and equation (26), we prove that

σ = 1 +
∑

j

θj(αj − α)
α(1 − α) ε

P E
j

P D(1 − εsE
j )

+
∑

j

θj(1 − αj)αj

α(1 − α)

[
αd

j (σj − 1)αe,C + (ν − 1)(1 − αe,C)
(

1 + (1 − αd
j ) αe,C

1 − αe,C

)]
(27)

Now we can transform this into the aggregate quantities by defining χ = ∑
j θj

(αj−α)2

α(1−α) ≤ 1:

ε̃ − 1 =
∑

j

θj
(αj − α)∑

j θj(αj − α)2 ε
P e

j

P D(1 − εsE
j ),

and

σ′ − 1 =
∑

j

θj
αj(1 − αj)∑
θjαj(1 − αj)

αd
j (σj − 1)

ν ′ − 1 =
∑

j

θj
αj(1 − αj)∑
θjαj(1 − αj)

(1 + (1 − αd
j ) αe,C

1 − αe,C
)(ν − 1).

Rearranging equation (27), we reach equation (16)

σ = 1 + χ(ε̃ − 1) + (1 − χ)(σ̃ − 1)

= χε̃ + (1 − χ)σ̃.

and prove proposition 1.

Detailed Interpretation. The aggregate elasticity depends on two effects, one depicting the
consumption reshuffling and another the energy reallocation. Starting with the latter, the energy
mix adjustment depends on two sources, specific to the nature of energy consumption and the
layered structure of energy production. The first is the adjustment in the electricity’s energy
mix ν. Since every sector j’s electricity originates from the same source, everyone’s electricity
becomes ν% greener in response to an increase in the relative price of dirty energy. The sec-
ond source of adjustment is sector j’s own adjustment away from dirty energy into electricity,
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determined by σj . This generates a reshuffling effect as the diversion away from primary dirty
energy consumption will now be fulfilled by both dirty and clean-based electricity. The benefit
of each effect evolves symmetrically, and is determined both by the clean energy expenditure
share in electricity generation, αe,C

j = P CEe,C
j

P CEe,C
j +P DEe,D

j

, and by sector j’s dirty expenditure share

δD
j = P DED

j

P DED
j +P DEe,D

j

. As the share of clean electricity increases, moving away from primary dirty
energy has a higher effect on the energy mix because it is fulfilled by proportionally more clean
energy. Similarly, the higher the primary dirty energy consumption, the more sector j’s elasticity
matters, as it diverts away frommore dirty energy. In addition, note that the energy redirected to-
wards electricity also benefits from the reshuffling towards cleaner electricity sources - reflected
in the additional terms in the ν ′. In contrast, these two forces attenuate the electricity’s elasticity
since either the electricity adjustment does not have a big impact due to the already high share
of clean energy or because its share of total end-use energy is low. Finally, sector j’s energy mix
balance, αj(1−αj)

α(1−α) θj , determines its contribution to the overall energy adjustment.
The consumption reallocation effects is a result of the differentiated sectoral sensitivities to

relative energy prices and to consumers’ sensitivity to changes in relative prices, embodied by
the elasticity of demand ε. Sector j’s sensitivity to energy prices is captured by its marginal cost’s
elasticity to the relative price of dirty energy, ε

P e
j

P D = d ln P e
j /P C

d ln P D/P C . Naturally both of these effects
matter more the higher is the share of energy in costs, sE

j . Moreover, the reallocation away or into
sector j is determined by its higher or lower relative consumption of clean energy, determined
by the size and sign of αj(αj−α)

α(1−α) θj . Hence, αj(αj−α)
α(1−α) θj can be either negative or non-negative.

E.2 Rolling Regressions of Original Sample

In section 6.3 we trim the tails of each window individually. Here we repeat the rolling regres-
sions using instead the estimation sample from our main specification - presented in section 5.1.
A caveat is that we must use the observations excluded from the sample before 2008 in order to
define the SSIV weights - otherwise we would lose those states. These observations, nonetheless,
remain excluded from the estimation sample. We display the results in figure E.12.

E.3 Calibration Exercise

We now provide the details of the calibration exercise laid out in table 5. We aggregate all
the EIA data by sector and year. Quantities and expenditures are summed, and prices are the
ratio of expenditures to quantities. From the BEA’s Fixed Assets Accounts’ table 2.742 we assign
items 18, 62, 89, and 90 to transportation, 34 and 67 to the residential sector, and 4, 11, 26, 37, 48,
53, 58, 59, 60, 61, 65, 66, 85, 86, 87, 88, 91, 95, and 98 to goods and services. Similarly, from the

42See here.
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Figure E.12: Rolling Regressions of equation (15)
Notes: Rolling regressions of equation (15) with 15 year windows. The sample used matches our main
exercise’s - presented in section 5.1. SSIV weights are set to the year before the window starts. The shaded
areas are the 90% confidence intervals. Standard errors are clustered at the state and year level. The yellow
line represents the natural logarithm of the rolling average ratio of clean to dirty energy consumption
measured in Btus.

BEA’s National Income and Product Accounts’ table 6.2D43, we assign items 22, 23, 39, and 43 to
transportation, 12 and 63 to the residential sector, and 4, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 35,
40, 41, 42, 52, 57, 64, 65, 69, 73, 74, 79, 82, and 85 to the production sector.

The previous step allows us to compute all end-use expenditure shares. We are left with
assigning the share of electricity spending to clean or dirty sources. To do this, we first take
LCOE prices for renewables from U.S. Energy Information Administration (2018) for 2022, our
main year of analysis. We choose to use the forecasted prices in 2018 to allow for a lag between
planning and implementation. To extend the LCOESs back to 2007, we rely on the LCOE price
dynamics for onshore wind and photovoltaic for the U.S., and the world average geothermal and
hydroelectric LCOEs from International Renewable Energy Agency (2024). Specifically, for wind
we have the actual series available. For the remaining one we lack the data. As a result, we
linearly regress the data and predict the missing values. For solar we use an exponential fit. For
geothermal and hydropower we use instead a linear fit. We present the series and fitted values
in figure E.13.

For nuclear generation in 2022 we use instead the marginal costs provided in Nuclear Energy
Institute (2025). This choice is based on the idea that nuclear in 2022 is not the marginal genera-
tion source. Although this may not be the case in 2007, for consistency, we opt to maintain this

43See here.
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Figure E.13: Renewables’ LCOE Dynamics
Notes: Original data from International Renewable Energy Agency (2024). The fitted values are obtained by
regressing the available series on a constant and the year, or the logarithm of the year for solar generation.

assumption. The drawback is that the price of clean electricity is actually lower in 2007 because
most clean electricity originates from this source. We linearly interpolate the prices for missing
years.

Finally, we use the expenditures in fossil fuels and biomass in the electric power sector from
the SEDS to compute prices for each pollutant energy source. The point here is that most of
the costs for electricity generation from dirty sources are determined by fuel prices and not by
infrastructure costs.

Using these figures we are able to compute the average price per kwh and Btu for clean and
dirty energy, respectively. We multiply these prices by the quantities of electricity produced
or dirty energy consumed in electricity generation - retrieving an estimate for the expenditure
shares in each energy aggregate. Equippedwith these we can split the end-use expenditure shares
in electricity into clean and dirty generation.

Because our model does not foresee market power nor other fixed costs, we opt to compute a
virtual price of electricity. We first take the first-order conditions implied by profit maximization
with a CES function, and compute the implied ae from the prices and expenditure shares. Then,
using the CES price index, we compute the virtual price of electricity. We need this to compute
ε

P E
j

P D .
Together, this information allows us to compute the aggregate elasticity of substitution, σ,

using equation (16), if we know the sectoral and consumption elasticities.
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E.4 Counterfactual Exercises

Electricity Counterfactual. Note that in order for the share of electricity not to change across
energy end-use sectors, we need that d ln P D = d ln P e = 0. Taking the price index for electricity,
we have that

d ln P e = d ln ae

d ln P e
d ln ae + d ln P C

d ln P e
d ln P C .

where d ln ae

d ln P e = dae

dP e
ae

P C . Using the expressions,

dae

dP e
= 1

1 − ν
(P e)ν [(P C)1−ν − (P D)1−ν ]

and

dP C

dP e
= 1

1 − ν
(P e)ν(1 − ν)(P C)νae.

Hence,

d ln P e = 1
1 − ν

ae

[(
P C

P e

)1−ν

−
(

P D

P e

)1−ν]
d ln ae + ae

(
P C

P e

)1−ν

d ln P C .

Finally, note that from the FOC, ae

(
P C

P e

)1−ν

= αe,C . As a result,

d ln P e = 0

⇐⇒ d ln P C = − 1
αe,C(1 − ν)(1 − 1 − αe,C

1 − ae
)d ln ae.

Moreover, to increase the share of clean energy by approximately 10%, we need that

d ln Ee,C

Ee
= −νd ln P C + d ln ae = 0.1

Hence,

d ln P C = d ln ae − 0.1
ν

.
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Now we can solve for d ln ae and d ln P C which are equal to

d ln ae = 0.1
1 − νA

d ln P C = A0.1
1 − νA

where A ≡ − 1
αe,C(1−ν)(1 − 1−αe,C

1−ae ). As a result of this change, d ln αe,C ̸= 0 and d ln αj ̸= 0∀j

unless d ln P C = −0.1, in which case, the aggregate elasticity remains the same. In particular,
we have that

d ln αe,C = d ln αe,C

d ln P CEe,C
d ln P CEe,C + d ln αe,C

d ln P DEe,D
d ln P DEe,D

= (1 − αe,C)d ln P CEe,C − (1 − αe,C)d ln P DEe,D

= (1 − αe,C)(d ln ae + (1 − ν)d ln P C + ae

1 − ae
d ln ae).

We can then use the chain rule to find the effect on αe,C ,

dαe,C = αe,Cd ln αe,C

and αj ,

dαd
j =

dαd
j

dαe,C
dαe,C

= (1 − αd
j )dαe,C ,

since αj = αe,C(1 − αd
j ). We can then recompute the aggregate elasticity.
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